

Slide 2

The APA – The Engineered Wood Association is a Registered Provider with The American Institute of Architects Continuing Education Systems (AIA/CES), Provider #G023.
Credit(s) earned on completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request.

This course is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

APA

Slide 3

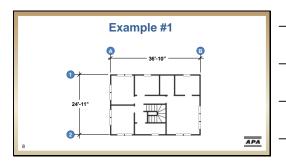

Meet the Team 2018 IRC Load Path, Lateral Forces and Limitations Matt Brown Warren Hamrick APA Ron Nuttall

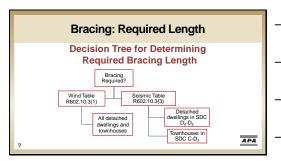
Learning Objectives

- Apply the IRC Wall Bracing provision to example plans
 Understand both the IRC and APA simplified methods
 Input plan information into the APA Wall Bracing Calculator

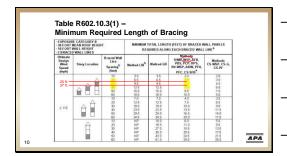
APA

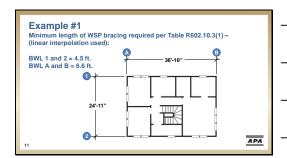
Slide 5

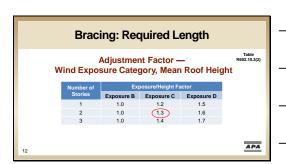


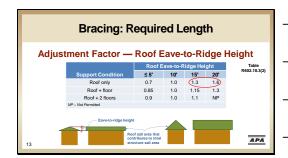

Example #1

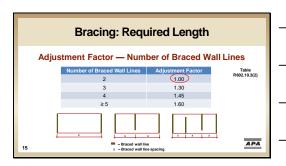
- Example:
 SDC C, Single-family dwelling
 Wind 115 mph, Wind Exposure C
 Method WSP
- Upper floor of two-story home
- Story height is 9 ft.
 Roof eave-to-ridge height is 16 ft.


APA

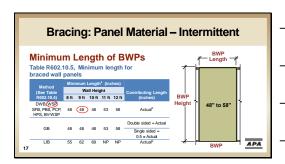

Slide 8

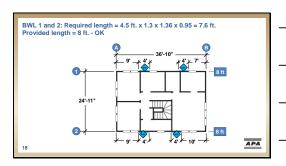


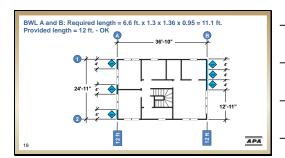

Slide 10

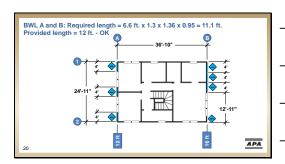


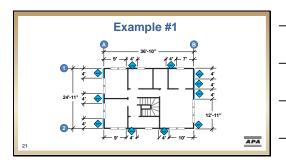
Slide 13



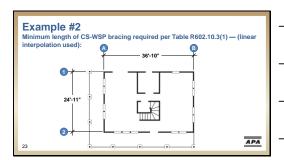



Example #1 Applicable Adjustment Factors, Table R602.10.3(2) #1 - Exposure category (C) - 1.3 #2 - Roof eave-to-ridge height (16 ft.) - 1.36 #3 - Story height (9 ft.) - 0.95


Slide 17

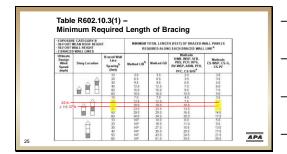


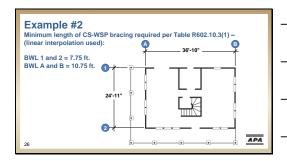
Slide 19

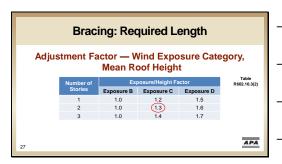


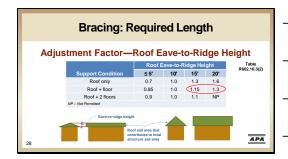
Example #2

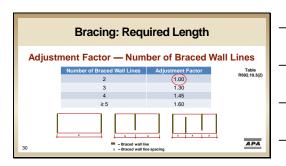
- Example:
 SDC C, Single-family dwelling
- Wind 115 mph, Wind Exposure C
- Method CS-WSP
- Bottom floor of two-story home
- Story height is 10 ft.
 Roof eave-to-ridge height is 16 ft.


APA

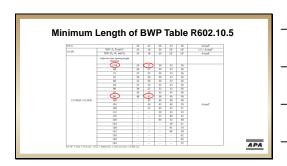

Slide 23



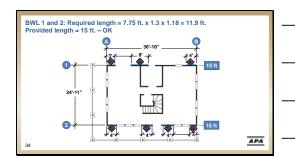

Slide 25

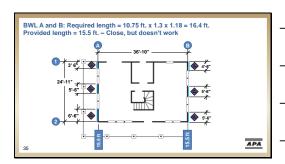


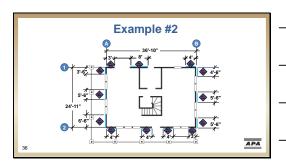
Slide 28



Example #2 Applicable Adjustment Factors, Table R602.10.3(2) #1 – Exposure category (C) – 1.3 #2 – Roof eave-to-ridge height (16 ft.) – 1.18


Slide 32




Slide 33

Example #2 Example: Clear opening height at doors = 8 ft. Minimum BWP length = 41" per Table R602.10.5 Clear opening height at windows = 5 ft. Minimum BWP length = 27" per Table R602.10.5

Slide 34

Bracing Topics

Slide 38

IRC Simplified Wall Bracing (602.12)

Prescriptive Limits

- The structure must meet the following requirements:
- Seismic Design Category (SDC) A, B, or C (SDC A or B for townhouses)
- Ultimate Wind Speed of 130 mph or less with Wind Exposure Category B or C
- One-, two-, or three-story structure
 Wood structural panel (WSP) or structural fiberboard sheathing (WSP) is used to brace exterior walls with 1/2-in gypsum board fastened to the interior side of walls

Slide 39

IRC Simplified Wall Bracing

Prescriptive Limits

- The structure must meet the following requirements:
- = 60 ft maximum length and width of the building
- Max eave-to-ridge height of 15 ft
- Max story height of 10 ft
- Max ratio between long and short side of building: 3 to 1
 Max cantilever of 24 inches beyond foundation
- No cripple walls in three story buildings

1PA		
1PA	 	
1PA	 	
AFA		

IRC Simplified Wall Bracing

Advantages to the Simplified Method:

- No seismic requirements
- Bracing only occurs on the perimeter (exterior walls)
- (No braced wall line length or spacing)
- No additional adjustment factors to check
- No interpolation

40

APA

APA

Slide 41

IRC Simplified Wall Bracing

Procedure:

1. Draw a rectangle around the perimeter of the building.

Slide 42

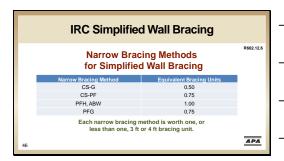
Bracing: Simplified Wall Bracing Rectangle Circumscribing an Enclosed Building Figure Re02.12.1 THE PROJECT AND THE PROJECT OF T

Bracing: Simplified Wall Bracing

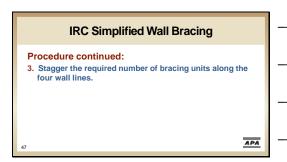
Procedure continued:

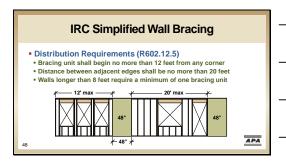
2. Identify the number of bracing units required on each side of the rectangle.

4:


APA

Slide 44

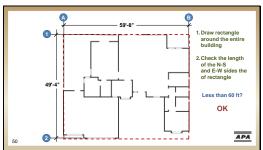



Slide 45

Bracing Methods for Simplified Wall Bracing Bracing Methods for Simplified Wall Bracing Bracing Methods for Simplified Wall Bracing Bracing Methods Stud Spacing & Fastener Stud Spacing & Fastener Stud Spacing & Fastener Bracing Unit Minimum Bracing Unit Length (feet) Continuous 3 12" field Intermittent 4 Structural Max 16" spacing 3" edge Continuous 3 Intermittent 4 Sheathing Student Spacing 5" field Intermittent 4 Structural Max 16" spacing 5" edge Continuous 3 Intermittent 4 Structural Max 16" spacing 5" edge Intermittent 5" edge Interm

Slide 47

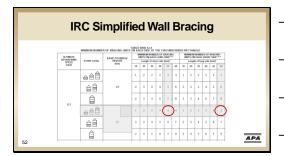
IRC Simplified Wall Bracing

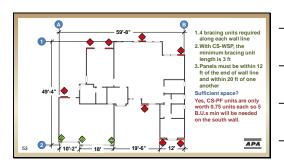

Example SDC B

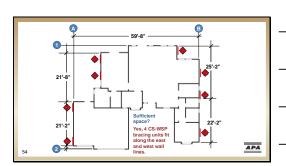
- Wind 115 mph, Wind Exposure B
 Method CS-WSP

- 1 Story
 Walls—9 ft
 Eave to ridge height—15 ft

APA

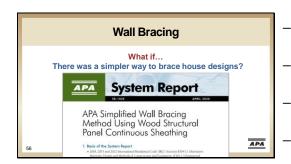

Slide 50




Slide 51

IRC Simplified Wall Bracing ULTIMATE DESIGN WIND SPEED (Hyb) ΔĤ Ê ΔĤ Û APA

Slide 52



Slide 56

Slide 57

What is it? APA Simplified Wall Bracing Method It is prescriptive, not engineered It takes advantage of the full strength of OSB and plywood It recognizes the strength found in shorter bracing panels It greatly reduces the complexity in designing bracing in single family houses It is based on the "simplified bracing" concept found in the IRC (R602.12) Its foundation is in years of testing and experience in the design of shear walls and diaphragms by APA

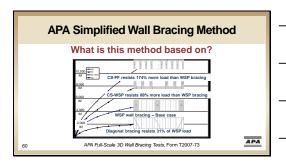
What is it?

Basis of design

- The components that control the performance of bracing are panel thickness and fasteners.

 Since the 3/8" code minimum panel thickness is relatively seldom used, the APA method is based on the more commonly used 7/16" thickness.

 Fasteners aren't very expensive, so the APA method increases the frequency of the fastening along panel edges.


 All exterior wall areas sheathed with wood structural panels.

- When APA put the three together, we discovered another level of performance in CS-WSP.

APA

Slide 59

Comparison of Simplified Methods IRC Simplified vs. APA Simplified					
	Comparison Table				
	IRC	APA			
Minimum thickness WSP	3/8"	7/16"			
Nailing at panel edges	6" o.c.	4" o.c.			
Required bracing	Number of units	Total length of bracing			
Minimum Length bracing unit	36"	Same as CS-WSP			
Narrow bracing	Portal frames only	Can be as narrow as 20" without portal frame			
Portal Frames	CS-G = 1/2 unit CS-PF and PFG = 3/4 unit	CS-PF 1.5 x actual length			
Partial length bracing	Not allowed	Allowed in 8' & 9' walls			

APA Simplified Wall Bracing Method

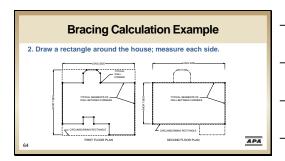
Streamlining the process

- Four steps:
- 1. Check the system criteria, lateral support and limitations.
- 2. Determine required bracing length from Table 3 and apply wall height multiplier.
- Identify full height wall sections and whether they meet the minimum lengths per Tables 1 and 2 and the distribution requirements.
- Add all qualifying bracing panels from step 3 on each side of the home and compare to step 2.

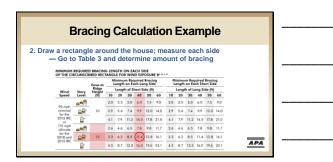
 APA

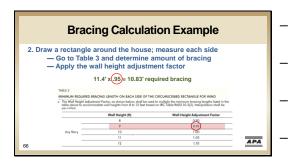
 APA

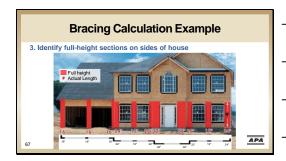
Slide 62

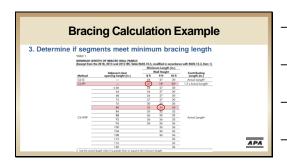

Bracing Calculation Example

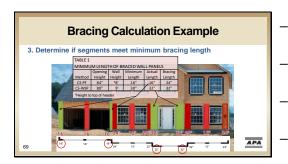
- 1. The house must meet the system criteria
- \checkmark No side longer than 60 feet
- √ Three stories or less
- √ Wall heights ≤ 12 feet
- ✓ Roof to eave to ridge height ≤ 15 feet
- ✓ Ultimate wind speeds ≤ 130 mph
- ✓ Check lateral support and foundations
- \checkmark Single family must be in SDC A, B or C

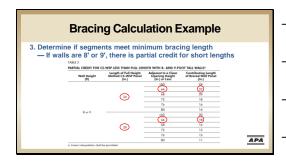

APA

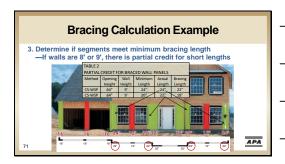

Slide 63

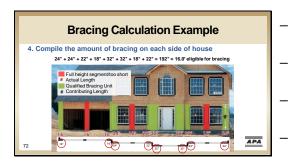

Bracing Calculation Example 1. The design parameters House depth—40 feet Roof height ≤ 15 feet 9' first floor height 8' second floor height Wind Exposure Category—B 115 mph ultimate wind zone 2nd Floor above garage Drywall inside of exterior walls APA

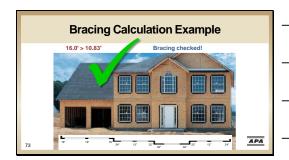

Slide 65

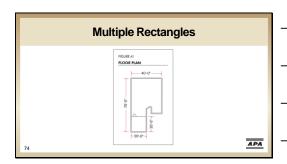


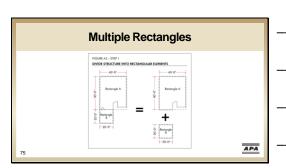


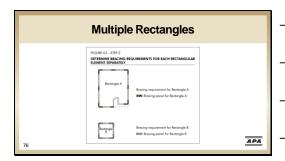

Slide 68



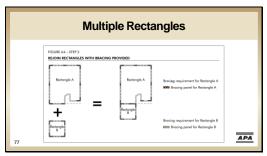


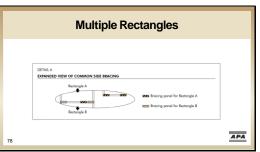

Slide 71

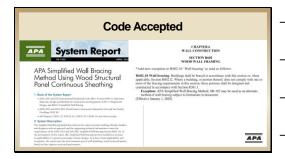




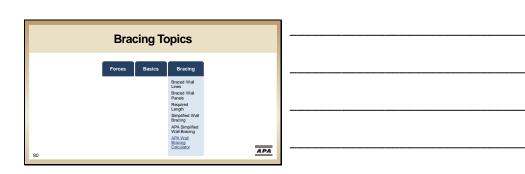
Slide 73

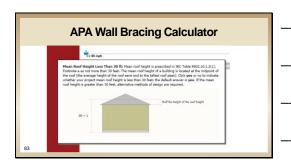


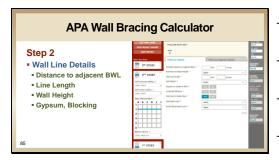




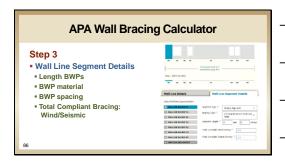
Slide 77




Slide 80



APA Wall Bracing Calculator Benefits: The user locates the bracing segments, which offers user creativity while automating the code check, flagging incorrect or insufficient design. The output makes plan review clear and concise, and implementation into the construction plans straightforward.

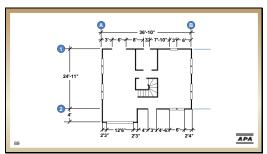

Slide 83

APA Wall Bracing Calculator						
	Project Information fulder/Designer					
Step 1	House/Bidg Plan Name					
 Design Criteria 	Davidopment Address					
- Code	Code II					
= SDC	MARKO DE 2004 DEC. BARED ON 2012 DEC. GARRO ON 2012 DEL MARKO ON 2018 DEC.					
■ Wind Speed	SDC (Seintric Design Category) //	TORRESONAL C Su Su Su Su				
Number of Stories	Design Wind Speed III	Select #				
	Wind Exposure Category 11	SAFERIAN II SOFORMEC SEPONDED				
	Total Number of Stories III	SECOND SECOND SECOND				
	Cripple Wall 11	711 40				
84	Mean Roof Height less than 20 ft.	105 40				

Slide 86

Slide 87

APA Wall Bracing Calculator Step 4 Producing a Project Report PDF or Print Summary Elevations Wind & Seismic factors Qualified Bracing vs. Required Bracing Required Bracing Summary Elevations Required Bracing vs. Required Bracing vs. Required Bracing vs.

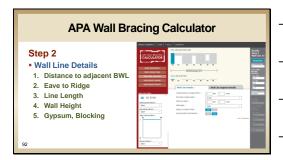

Example

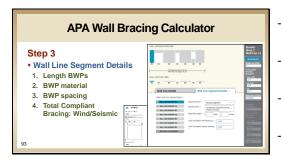
- Example:
 SDC A, Single-family dwelling
 Wind 115 mph, Wind Exposure C
 Method CS-WSP

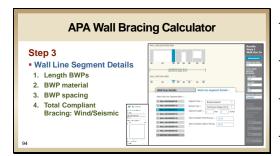
- One-story home
 Wall height is 9 ft.
 Roof eave-to-ridge height is 16 ft.

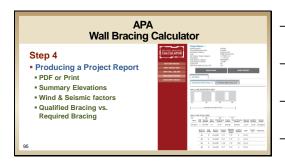
APA

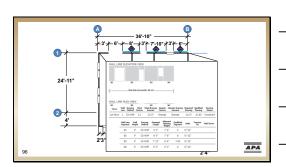
Slide 89

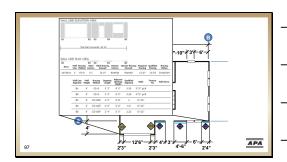

Slide 90


APA Wall Bracing Calculator Step 1 Entering Project Information New Project Import Existing Project




Slide 92





Slide 95

Slide 98

Slide 101

Thank you!	
www.apawood.org www.apawood.org/help	

0				
0		 		
	I			