1. Basis of the product report:
 - 2012 IRC: Sections R104.11 Alternative materials, and R502.1.5, R602.1.2, and R802.1.4 Structural glued-laminated timber
 - 2015 ANSI/AWC Special Design Provisions for Wind and Seismic (SDPWS)
 - ASTM D3737-12 and D3737-08 recognized by the 2018 and 2015 IBC and IRC, and 2012 IBC and IRC, respectively
 - ASTM D7672-14 and D7672-12 recognized by the 2018 IBC and IRC, and 2015 IBC and IRC, respectively
 - ANSI 117 Specification for Structural Glued Laminate Timber of Softwood Species

2. Product description:
 Calvert GL 3000 glulam beams are used as beams, headers, rafters, or purlins, and are manufactured with the 30F-E2M3/SP or 30F-E/DF3 balanced layup combination using laminated veneer lumber (LVL), as permitted by ANSI A190.1, as the tension and compression laminations, and Southern pine or Douglas fir-Larch laminations in the remainder of the beam. Calvert GL 3000 glulam beams manufactured with the 30F-E/DF3 layup combination are further designated as “GL 3000 DF.” The LVL laminations are supplied by manufacturers recognized by APA and identified in Calvert’s in-plant manufacturing standard approved by APA. The LVL complies with the control values listed in the manufacturing standard and is manufactured in full length and width laminations, and in thicknesses up to 2 inches from wood veneers. All veneer grain is parallel to the length of the billets. The veneers are bonded with exterior-type adhesives complying with ASTM D2559.

 CG RIM is a glulam rim board manufactured in accordance ANSI A190.1 (www.apawood.org/resource-library) using Combination 2 (L2/DF) and then resawn to a specific thickness without re-grading. The depth of CG RIM is limited to 14 inches.

3. Design properties:
 Table 1 lists the allowable design properties for Calvert GL 3000 and GL 3000 DF glulam beams. The allowable loads for Calvert GL 3000 and GL 3000 DF shall be in accordance with the recommendations provided by the manufacturer (www.calvertglulam.com) and APA Data File: Glued Laminated Beam Design Tables, Form S475 (see link above), as applicable. Table 2 lists the allowable properties for CG RIM in rim board applications. The allowable bending stress, tensile stress, and compressive stress parallel to grain for Combination 2 glulams may not be applicable to CG RIM.
4. **Product installation:**
Calvert GL 3000 and GL 3000 DF glulam beams shall be installed in accordance with the recommendations provided by the manufacturer and APA Construction Guide: *Glulam Connection Details*, Form T300 (see link above). Permissible field notching and drilling shall be in accordance with the recommendations provided by the manufacturer and APA Technical Note: *Field Notching and Drilling of Glued Laminated Timber Beams*, Form S560 (see link above).

CG RIM shall be installed in accordance with the recommendations provided by the manufacturer. Permissible field notching and drilling shall be in accordance with the recommendations provided by the manufacturer.

5. **Fire-rated assemblies:**
Fire-rated assemblies shall be constructed in accordance with the recommendations provided by the manufacturer and APA Design/Construction Guide: *Fire-Rated Systems*, Form W305 (see link above). For one- or two-hour rated glulam beams, the Calvert GL 3000 and GL 3000 DF glulam beams shall be constructed in accordance with ANSI A190.1 and designed in accordance with the recommendations provided by the manufacturer and APA Technical Note: *Calculating Fire Resistance of Glulam Beams and Columns*, Form Y245 (see link above) or Chapter 16 of the 2018 National Design Specification for Wood Construction (NDS).

The provisions of 2018 and 2015 IBC Section 722 Calculated fire resistance and 2012 IBC Section 722.6.3 Design of fire-resistant exposed wood members shall be applicable to CG RIM. Fire-rated rim board assemblies shall be constructed in accordance with the recommendations provided by APA Data File: *APA Rim Board in Fire-Rated Assemblies*, Form D350 (see link above) or the manufacturer.

6. **Limitations:**
a) Calvert GL 3000 and GL 3000 DF glulam beams shall be designed in accordance with the code using the design properties specified in this report. Calvert CG RIM shall be designed in accordance with the applicable code using the design properties specified in this report.
b) Calvert GL 3000 glulam beams shall have a minimum depth of 7-1/4 inches and a maximum depth of 24 inches except that GL 3000 DF glulam beams are limited to a maximum depth of 20 inches, a minimum width of 3-1/8 inches and a maximum width of 7-1/2 inches.
c) CG RIM shall be limited to 1-1/2 or 1-3/4 inches in thickness and a maximum of 14 inches in depth.
d) CG RIM shall be limited to applications where the rim board is continuously supported for the full length and thickness of the product.
e) CG RIM is limited to dry service conditions where the average equilibrium moisture content of solid-sawn lumber is less than 16 percent.
f) Calvert GL 3000 and GL 3000 DF glulam beams and CG RIM are produced at Calvert Company’s facilities in Vancouver and Washougal, Washington, under a quality assurance program audited by APA.
g) This report is subject to re-examination in one year.

7. **Identification:**
Calvert GL 3000 and GL 3000 DF glulam beams and CG RIM described in this report are identified by a label bearing the manufacturer’s name (Calvert) and/or trademark, the APA assigned plant number (1010 for the Vancouver, Washington plant or 1035 for the Washougal, Washington plant), the product standard (ANSI A190.1), the product grade, the APA logo, the report number PR-L269, and a means of identifying the date of manufacture.
Table 1. Allowable design Values for Calvert GL 3000 and GL 3000 DF Glulam Beams for Normal Duration of Load\(^{(1,2)}\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Species</th>
<th>Outer/ Core(^{(3)})</th>
<th>Extreme Fiber in Bending(^{(4)})</th>
<th>Compression Perpendicular to Grain</th>
<th>Shear Parallel to Grain(^{(5)})</th>
<th>Modulus of Elasticity(^{(6)})</th>
<th>Extreme Fiber in Bending(^{(7)})</th>
<th>Comp. Perpendicular to Grain</th>
<th>Shear Parallel to Grain(^{(8)})</th>
<th>Modulus of Elasticity(^{(9)})</th>
<th>Axially Loaded</th>
<th>Fasteners</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(Bal or Unbal(^{(10)}))</td>
<td>Bottom of Beam Stressed in Tension (Positive Bending)</td>
<td>Top of Beam Stressed in Tension (Negative Bending)</td>
<td>Ten. Face</td>
<td>Comp. Face</td>
<td>True</td>
<td>Apparent</td>
<td>Beam Stability</td>
<td>True</td>
<td>Apparent</td>
<td>Beam Stability</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>F(_{ax})(^{(11)}) (psi)</td>
<td>F(_{ax})(^{(11)}) (psi)</td>
<td>F(_{yy})(^{(12)}) (psi)</td>
<td>F(_{xx}) (psi)</td>
<td>E(_{xx}) (10(^{6}) psi)</td>
<td>E(_{yy}) (10(^{6}) psi)</td>
<td>E(_{xy}) (10(^{6}) psi)</td>
<td>F(_{yy}) (psi)</td>
<td>E(_{yx}) (10(^{6}) psi)</td>
<td>E(_{yy}) (10(^{6}) psi)</td>
</tr>
<tr>
<td>Calvert GL 3000(^{(11)})</td>
<td>LVL/SP (B)</td>
<td>3000</td>
<td>3000</td>
<td>650(^{(16)})</td>
<td>650(^{(16)})</td>
<td>300</td>
<td>2.2</td>
<td>2.1</td>
<td>1.11</td>
<td>1750</td>
<td>650</td>
<td>265</td>
</tr>
<tr>
<td>Calvert GL 3000 DF(^{(1)})</td>
<td>LVL/DF (B)</td>
<td>3000</td>
<td>3000</td>
<td>650</td>
<td>650</td>
<td>265(^{(11)})</td>
<td>2.2</td>
<td>2.1</td>
<td>1.11</td>
<td>1550</td>
<td>560</td>
<td>230</td>
</tr>
<tr>
<td>Wet-use factor</td>
<td>0.8</td>
<td>0.53</td>
<td>0.875</td>
<td>0.833</td>
<td>0.8</td>
<td>0.53</td>
<td>0.875</td>
<td>0.833</td>
<td>0.8</td>
<td>0.73</td>
<td>see NDS</td>
<td></td>
</tr>
</tbody>
</table>

\(^{(1)}\) The combinations in this table are intended primarily for members stressed in bending due to loads applied perpendicular to the wide faces of the laminations. Allowable design values are tabulated, however, for loading both perpendicular and parallel to the wide faces of the laminations.

\(^{(2)}\) The tabulated allowable design values are for normal duration of loading. For other durations of loading, see the applicable building code. The tabulated allowable design values are for dry conditions of use. For wet conditions of use, multiply the tabulated values by the wet-use factors shown at the bottom of the table.

\(^{(3)}\) SP = Southern pine; DF = Douglas fir-Larch; LVL = laminated veneer lumber per the manufacturing standard.

\(^{(4)}\) The balance (B) layup is intended primarily for multiple-span or cantilever beam applications, but may be used in simple-span applications.

\(^{(5)}\) The values of F\(_{xx}\) are based on members 5-1/8 inches in width by 12 inches in depth by 21 feet in length. For members with a larger volume, F\(_{xx}\) shall be multiplied by a volume factor, C\(_v\) = (5.125/b)\(^{(10)}\) (12/d)\(^{(10)}\) (21/L)\(^{(10)}\), where b is the beam width (in.), d is the beam depth (in.), and L is the beam length between the points of zero moment (ft).

\(^{(6)}\) For non-prismatic members, members subject to impact or cyclic loading, or shear design of bending members at connections (NDS 3.4.3.3), the F\(_{xx}\) and F\(_{yy}\) values shall be multiplied by a factor of 0.72. The tabulated F\(_{yy}\) values are for timbers with laminations made from a piece of timber around the width or multiple pieces that have been edge bonded. For timber manufactured from multiple piece laminations (across width) that are not edge bonded, value shall be multiplied by 0.4 for members with 5, 7, or 9 laminations or by 0.5 for all other members.

\(^{(7)}\) The tabulated E values include true E (also known as "shear-free E"), apparent E, and E for beam stability calculation (NDS 3.3.3.8). For calculating beam deflections, the tabulated E values shall be used unless the shear deflection is determined in addition to bending deflection based on the tabulated E\(_{max}\). The axial modulus of elasticity, E\(_{max}\) and E\(_{ax}\)\(_{max}\), shall be equal to the tabulated E\(_{max}\) and E\(_{yy}\)\(_{max}\) values.

\(^{(8)}\) The values of F\(_{yy}\) are based on members 12 inches in depth. For depths less than 12 inches, F\(_{yy}\) shall be permitted to be increased by multiplying by the flat use factor. (12/d)\(^{(11)}\), where d is the beam depth in inches. When d is less than 3 inches, use the size adjustment factor for 3 inches.

\(^{(9)}\) The beam depths are limited to 7-1/4 to 24 inches except that the maximum beam depth for GL 3000 DF (30F-E/DF3) is limited to 20 inches. The beam widths are limited to 3-1/8 to 7-1/2 inches.

\(^{(10)}\) The values of F\(_{yy}\) shall be permitted to be increased to the published allowable compressive stress perpendicular to grain of the outermost laminated veneer lumber in the plank (flatwise) orientation.

\(^{(11)}\) The value of F\(_{yy}\) for GL 3000 DF (30F-E/DF3) shall be reduced to 255 psi, 215 psi, and 210 psi, respectively, for 9-1/4-inch, 7-1/2-inch, and 7-1/4-inch deep beams.
Table 2. Allowable Design Properties for CG RIM\(^{(1,2)}\)

<table>
<thead>
<tr>
<th>Product</th>
<th>Thickness (in.)</th>
<th>Horizontal Load Transfer Capacity (lbf/ft)(^{(3,4)})</th>
<th>Vertical Load(^{(5)})</th>
<th>Lateral Resistance for 1/2-inch-dia. Lag Screws (lbf)(^{(7)})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Nails Spaced at 6 inches o.c.</td>
<td>Depths ≤ 11-7/8 in.</td>
<td>11-7/8 in. < Depth ≤ 14 in.</td>
</tr>
<tr>
<td>CG RIM</td>
<td>1-1/2</td>
<td>215</td>
<td>2,900</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>1-3/4</td>
<td>225</td>
<td>3,600</td>
<td>3,600</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 lbf = 0.454 kg, 1 psi = 6.9 kPa.

\(^{(1)}\) The rim board depth shall not exceed 14 inches. Only permitted in applications where the rim board is continuously supported for the full length and thickness of the product.

\(^{(2)}\) All design values are applicable to the normal load duration (10 years) for wood products, except for the horizontal load transfer capacity, which is based on the short-term load duration (10 minutes). Design values shall be adjusted for other load durations in accordance with the applicable building code except that the uniform vertical load capacity and concentrated vertical load capacity are not permitted to be increased for any load durations shorter than the normal load duration (10 years). The horizontal load transfer capacity is permitted to be increased by a factor of 1.4 when subjected to wind loads. Toe-nailed connections are not limited by the 150 lbf/ft lateral load capacity noted for Seismic Design Categories D, E and F in Section 4.1.7 of the Special Design Provisions for Wind and Seismic (SDPWS).

\(^{(3)}\) CG RIM shall be permitted to be substituted for solid-sawn framing in horizontal wood diaphragms as shown in Table 4.2A of the 2015 SDPWS (for 2018 and 2015 IBC) and 2008 SDPWS (for 2012 IBC), provided the maximum shear values for the diaphragms are limited to the allowable lateral capacity noted in this table.

\(^{(4)}\) 8d common (0.131 x 2-1/2 inches) nails shall be used to connect the floor sheathing to CG RIM and to connect CG RIM to the sill plate (toenail). Two 8d box (0.113 x 2-1/2 inches) or common (0.131 x 2-1/2 inches) nails are required to connect each floor joist to the sill plate, and two 8d box (0.113 x 2-1/2 inches) or common (0.131 x 2-1/2 inches) nails are required to connect CG RIM to the end of each floor joist.

\(^{(5)}\) Compression perpendicular-to-grain capacities of the sill plate and floor sheathing must be checked and must not be exceeded.

\(^{(6)}\) The concentrated vertical load capacity is based on a 4-1/2-inch bearing length.

\(^{(7)}\) Capacity of lag screw connections between rim board and deck ledgers per lag screw of 1/2 inch in diameter when installed into the face of CG RIM, 2x spruce-pine-fir side member, and 1/2-inch-thick sheathing with a full penetration of the CG RIM of the lag screw. Minimum end distance of 4 inches is required.
APA – The Engineered Wood Association is an approved national standards developer accredited by American National Standards Institute (ANSI). APA publishes ANSI standards and Voluntary Product Standards for wood structural panels and engineered wood products. APA is an accredited certification body under ISO/IEC 17065 by Standards Council of Canada (SCC), an accredited inspection agency under ISO/IEC 17020 by International Code Council (ICC) International Accreditation Service (IAS), and an accredited testing organization under ISO/IEC 17025 by IAS. APA is also an approved Product Certification Agency, Testing Laboratory, Quality Assurance Entity, and Validation Entity by the State of Florida, and an approved testing laboratory by City of Los Angeles.

APA – THE ENGINEERED WOOD ASSOCIATION

HEADQUARTERS
7011 So. 19th St. • Tacoma, Washington 98466
Phone: (253) 565-6600 • Fax: (253) 565-7265 • Internet Address: www.apawood.org

PRODUCT SUPPORT HELP DESK
(253) 620-7400 • E-mail Address: help@apawood.org

DISCLAIMER
APA Product Report® is a trademark of APA – The Engineered Wood Association, Tacoma, Washington. The information contained herein is based on the product evaluation in accordance with the references noted in this report. Neither APA, nor its members make any warranty, expressed or implied, or assume any legal liability or responsibility for the use, application of, and/or reference to opinions, findings, conclusions, or recommendations included in this report. Consult your local jurisdiction or design professional to assure compliance with code, construction, and performance requirements. Because APA has no control over quality of workmanship or the conditions under which engineered wood products are used, it cannot accept responsibility for product performance or designs as actually constructed.