Pacific Woodtech Laminated Veneer Lumber
PR-L233
Pacific Woodtech Corporation

Products: Laminated veneer lumber structural building components
Pacific Woodtech Corporation, 1850 Park Lane, Burlington, Washington 98233
(360) 707-2200
www.pacificwoodtech.com

1. Basis of the product report:
 - 2018 and 2015 International Building Code (IBC): Sections 104.11 Alternative materials and 2303.1.10 Structural composite lumber
 - 2012 IBC: Section 104.11 Alternative materials and Section 2303.1.9 Structural composite lumber
 - 2018 and 2015 International Residential Code (IRC): Sections R104.11 Alternative materials, and R502.1.5, R602.1.5, and R802.1.4 Structural composite lumber
 - 2012 IRC: Sections R104.11 Alternative materials, and R502.1.7, R602.1.4, and R802.1.6 Structural composite lumber
 - ASTM D5456-14b, ASTM D5456-13, and ASTM D5456-09 recognized by the 2018 IBC and IRC, 2015 IBC and IRC, and 2012 IBC and IRC, respectively

2. Product description:
 Pacific Woodtech LVL is pressed into billets that are approximately 48 inches in width, 3/4 to 3-1/2 inches in thickness, and up to approximately 66 feet in length. LVL billets are ripped into products that are 1-3/4 to 48 inches in depth. Products up to 7 inches in thickness may be fabricated by means of a secondary face-bonding process.

3. Design properties:
 The structural design provisions for wood construction provided in the building code are applicable to Pacific Woodtech LVL unless noted otherwise in this report. Table 1 lists Allowable Stress Design reference properties. Table 2 lists the equivalent specific gravities for connection design. Minimum spacings for fasteners installed in the edge of a member are provided in Table 3. The allowable spans for Pacific Woodtech LVL shall be in accordance with the recommendations provided by the manufacturer (http://www.pacificwoodtech.com/PWLVL.html).

4. Product installation:
 Pacific Woodtech LVL shall be installed in accordance with the recommendations provided by the manufacturer (see link above).

5. Fire-rated assemblies:
 The provisions of IBC Section 721.6.3, Design of fire-resistant exposed wood members, shall be applicable to Pacific Woodtech LVL. Fire-rated assemblies shall be constructed in accordance with the recommendations provided by APA Design/Construction Guide: Fire-Rated Systems, Form W305 (www.apawood.org/resource-library) and the manufacturer (see link above).

6. Limitations:
 a) Pacific Woodtech LVL shall be designed in accordance with the code using the design properties specified in this report.
b) Pacific Woodtech LVL is limited to dry service conditions where the average moisture content of sawn lumber is less than 16 percent.

c) Pacific Woodtech LVL is produced at the Pacific Woodtech Corporation manufacturing plant located in Burlington, Washington, under a quality control program audited by APA.

d) This report is subject to re-examination in one year.

7. Identification:
 Pacific Woodtech LVL is sold under the Pacific Woodtech and various private-label brands. Regardless of the brand applied, all products are identified by a label bearing the manufacturer's name (Pacific Woodtech) and/or trademark, the APA assigned plant number (1047), the LVL grade, the APA logo, this report number (PR-L233), and a means of identifying the date of manufacture.
Table 1. Allowable Stress Design Reference Properties for Pacific Woodtech LVL

<table>
<thead>
<tr>
<th>Apparent E</th>
<th>True E</th>
<th>Beam((^{a}))</th>
<th>Plank((^{a}))</th>
<th>Axial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade</td>
<td>MOE (10^6 psi)</td>
<td>Grade</td>
<td>MOE (10^6 psi)</td>
<td>F(_b) (psi)</td>
</tr>
<tr>
<td>1.5E</td>
<td>1.5</td>
<td>1.6E</td>
<td>1.6</td>
<td>2250</td>
</tr>
<tr>
<td>1.8E</td>
<td>1.8</td>
<td>1.9E</td>
<td>1.9</td>
<td>2750</td>
</tr>
<tr>
<td>2.0E</td>
<td>2.0</td>
<td>2.1E</td>
<td>2.1</td>
<td>2900</td>
</tr>
<tr>
<td>2.2E</td>
<td>2.2</td>
<td>2.3E</td>
<td>2.3</td>
<td>3100</td>
</tr>
<tr>
<td>2.4E</td>
<td>2.4</td>
<td>2.5E</td>
<td>2.5</td>
<td>3550</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 lbf = 4.448 N, 1 psi = 6.9 kPa

\(^{a}\) The tabulated values apply to protected, dry service conditions. Except for modulus of elasticity (MOE) and compression perpendicular to grain (F\(_c\)), the tabulated values are permitted to be adjusted for duration of load as provided in the code.

\(^{b}\) Beam values apply to members loaded and supported on faces showing the narrow edge of all veneers, typically the narrow faces of the member.

\(^{c}\) Plank values apply to members loaded and supported on faces showing the face of one veneer, typically the wide faces of the member.

\(^{d}\) The tabulated MOE values are the apparent modulus of elasticity and include the effects of shear deformation. When calculating deflection, only the bending deflection needs to be included. The deflection equation for a simple-span beam under uniform load is:

\[\delta = \frac{270 \cdot w \cdot L^4}{E_{\text{apparent}} \cdot b \cdot h^3} \]

where:
- \(\delta\) = Estimated total deflection, inches
- \(w\) = uniform load, plf
- \(L\) = span, feet
- \(E_{\text{apparent}}\) = tabulated apparent modulus of elasticity, psi
- \(b\) = beam width, inches
- \(h\) = beam depth, inches

\(^{e}\) The tabulated MOE values are the shear-free modulus of elasticity. When calculating deflection, both bending and shear deflections must be included. The deflection equation for a simple-span beam under uniform load is:

\[\delta = \frac{270 \cdot w \cdot L^4}{E_{\text{true}} \cdot b \cdot h^3} + \frac{28.8 \cdot w \cdot L^2}{E_{\text{true}} \cdot h} \]

where:
- \(\delta\) = Estimated total deflection, inches
- \(w\) = uniform load, plf
- \(L\) = span, feet
- \(E_{\text{true}}\) = tabulated true modulus of elasticity, psi
- \(b\) = beam width, inches
- \(h\) = beam depth, inches

\(^{f}\) Coefficient of variation of modulus of elasticity, COV\(_E\) = 0.10.

\(^{g}\) Flexural stress, \(F_b\), for the beam orientation is based on a reference depth of 12 inches. For other depths, multiply by a size factor of \((12/d)^{1/5}\), where \(d\) is the depth in inches. For depths less than 1-3/4 inches, multiply by 1.47.

\(^{h}\) Flexural stress, \(F_b\), for the plank orientation is based on a reference depth of 1-3/4 inches. For other depths, multiply by a size factor of \((1.75/d)^{1/3}\), where \(d\) is the depth in inches. For depths less than 1-3/4 inches, multiply by 1.00.

\(^{i}\) Flexural stress, \(F_{bi}\), values are permitted to be increased by 4 percent for repetitive members as provided by the code.

\(^{j}\) The tabulated compressive stress perpendicular to grain (F\(_c\)) value is based on the average stress at the proportional limit or 0.04-in. deformation, whichever is less.

\(^{k}\) Tension parallel to grain, F\(_i\), is based on a reference gage length of 4 feet. For longer lengths, multiply by a length factor of \((4/L)^{1/6}\), where \(L\) is the length in feet.

\(^{l}\) Compression parallel to grain, F\(_c\).
Table 2. Equivalent Specific Gravity for Connection Design

<table>
<thead>
<tr>
<th>Connection Type</th>
<th>Face</th>
<th>Edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nail – Withdrawal</td>
<td>0.50</td>
<td>0.47</td>
</tr>
<tr>
<td>Nail – Lateral</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Bolt – Lateral</td>
<td>0.50</td>
<td>N.A.</td>
</tr>
</tbody>
</table>

Face: member faces showing the face of one veneer, typically the wide faces of the member

Edge: member faces showing the narrow edge of all veneers, typically the narrow faces of the member

Table 3. Minimum Spacing for Fasteners Installed into Edge of Pacific Woodtech LVL

<table>
<thead>
<tr>
<th>LVL Dimensions</th>
<th>Fastener (a)</th>
<th>Minimum Spacing (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum 3/4-inch thick and 3-1/2-inch deep</td>
<td>8d Nail</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>10d Nail</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>12d Nail</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>16d Nail</td>
<td>Not Permitted</td>
</tr>
<tr>
<td></td>
<td>14 Gage Staple</td>
<td>4</td>
</tr>
</tbody>
</table>

Minimum 1-1/4-inch thick and 3-1/2-inch deep	10d Nail	4
	12d Nail	4
	16d Nail	6 (b)
	14 Gage Staple	4

For SI: 1 inch = 25.4 mm

(a) Nails are either common or box nails.

(b) May be 4 inches when nailing through bottom wall plate and sheathing (maximum 1-3/8-inch penetration).

APA – The Engineered Wood Association is an approved national standards developer accredited by American National Standards Institute (ANSI). APA publishes ANSI standards and Voluntary Product Standards for wood structural panels and engineered wood products. APA is an accredited certification body under ISO/IEC 17065 by Standards Council of Canada (SCC), an accredited inspection agency under ISO/IEC 17020 by International Code Council (ICC) International Accreditation Service (IAS), and an accredited testing organization under ISO/IEC 17025 by IAS. APA is also an approved Product Certification Agency, Testing Laboratory, Quality Assurance Entity, and Validation Entity by the State of Florida, and an approved testing laboratory by City of Los Angeles.

APA – THE ENGINEERED WOOD ASSOCIATION
HEADQUARTERS
7011 So. 19th St. • Tacoma, Washington 98466
Phone: (253) 565-6600 • Fax: (253) 565-7265 • Internet Address: www.apawood.org

PRODUCT SUPPORT HELP DESK
(253) 620-7400 • E-mail Address: help@apawood.org

DISCLAIMER
APA Product Report® is a trademark of APA – The Engineered Wood Association, Tacoma, Washington. The information contained herein is based on the product evaluation in accordance with the references noted in this report. Neither APA, nor its members make any warranty, expressed or implied, or assume any legal liability or responsibility for the use, application of, and/or reference to opinions, findings, conclusions, or recommendations included in this report. Consult your local jurisdiction or design professional to assure compliance with code, construction, and performance requirements. Because APA has no control over quality of workmanship or the conditions under which engineered wood products are used, it cannot accept responsibility for product performance or designs as actually constructed.