1. Basis of the product report:
 - 2012 IRC: Sections R502.1.5, R602.1.2, and R802.1.4 Structural glued laminated timber
 - ASTM D3737-12 and D3737-08 recognized by the 2018 and 2015 IBC and IRC, and 2012 IBC and IRC, respectively

2. Product description:
 Power Beam® and Power Rated Glulam (PRG®) are southern pine structural glued laminated timber manufactured in accordance with ANSI A190.1 using 28F-E1, 28F-E2, 30F-E1, 30F-E1M6, 30F-E2, and 30F-E2M6 for the Power Beam layup combinations, and 24F-V5M1/SP for the PRG layup combination recognized in the 2018 National Design Specification (NDS) Supplement, APA Glulam Design Specification, Form Y117 (www.apawood.org/resource-library), or ANSI 117. Power Beam and PRG are used as beams, headers, rafters, or purlins. Power Beam are manufactured in nominal widths of 3, 4, 6, and 8 inches (24F and 28F beams only), depths ranging from 5-1/2 to 28-7/8 inches, and lengths up to 60 feet, while PRG is manufactured in nominal widths of 3-1/2 and 5-1/2 inches, depths ranging from 9-1/4 to 18 inches, and lengths up to 60 feet.

3. Design properties:
 Table 1 lists the allowable design properties for Power Beam and PRG. The allowable spans for Power Beam and PRG shall be in accordance with the recommendations provided by the manufacturer (www.anthonyforest.com/assets/pdf/power-beam-brochure.pdf and www.anthonyforest.com/pdfs/AFP-PRGTechnicalBrochure.pdf) and APA Glued Laminated Beam Design Tables, Form S475 (see link above), as applicable.

4. Product installation:
 Power Beam and PRG shall be installed in accordance with the recommendations provided by the manufacturer and APA Glulam Connection Details, Form T300 (see link above). Permissible field notching and drilling shall be in accordance with the recommendations provided by the manufacturer, and APA Field Notching and Drilling of Glued Laminated Timber Beams, Form S560, and Effect of Large Diameter Horizontal Holes on the Bending and Shear Properties of Structural Glued Laminated Timber, Form V700 (see link above).

5. Fire-rated assemblies:
 Fire-rated assemblies shall be constructed in accordance with the recommendations provided by the manufacturer and APA Fire-Rated Systems, Form W305 (see link above). For one- or two-hour rated glulam beams, Power Beam and PRG shall be constructed in accordance with ANSI A190.1 and designed in accordance with the recommendations provided by the manufacturer and APA Technical Note: Calculating Fire Resistance of
Glulam Beams and Columns, Form Y245 (see link above) or Chapter 16 of the 2018 National Design Specification for Wood Construction (NDS).

6. Limitations:
 a) Power Beam and PRG shall be designed in accordance with the code using the design properties specified in this report.
 b) Power Beam and PRG shall have a minimum depth of 5-1/2 inches and 9-1/4 inches, respectively.
 c) Power Beam and PRG are produced at Anthony Forest Products Company, LLC, El Dorado, AR and Washington, GA facilities under a quality assurance program audited by APA.
 d) This report is subject to re-examination in one year.

7. Identification:
Power Beam and PRG described in this report are identified by a label bearing the manufacturer's name (Anthony Forest Products Company, LLC) and/or trademark, the APA assigned plant number (1079 for El Dorado, AR or 1080 for Washington, GA), the product standard (ANSI A190.1), the APA logo, the layup combination symbol, the report number PR-L263, and a means of identifying the date of manufacture.
Table 1. Allowable Design Values for PRG and Power Beam Manufactured by Anthony Forest Products Company, LLC for Normal Duration of Load (1.2)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Species</th>
<th>Outer/ Core (Bal or Unb)</th>
<th>Extreme Fiber in Bending (3)</th>
<th>Compression Perpendicular to Grain</th>
<th>Shear Perpendicular to Grain (5)</th>
<th>Modulus of Elasticity (7)</th>
<th>Extreme Fiber in Bending (3)</th>
<th>Comp. Perpendicular to Grain</th>
<th>Shear Parallel to Grain</th>
<th>Modulus of Elasticity (7)</th>
<th>Axially Loaded</th>
<th>Fasteners</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bottom of Beam Stressed in Tension (Positive Bending)</td>
<td>Top of Beam Stressed in Tension (Negative Bending)</td>
<td>Ten. Face</td>
<td>Comp. Face</td>
<td>True Apparent</td>
<td>Beam Stability</td>
<td>True Apparent</td>
<td>Beam Stability</td>
<td>Tension Parallel to Grain</td>
<td>Comp. Parallel to Grain</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>F_W (*)(psi)</td>
<td>F_X (psi)</td>
<td>F_L L (psi)</td>
<td>F_V (psi)</td>
<td>E_{u,b} (10^6 psi)</td>
<td>E_{a,app} (10^6 psi)</td>
<td>E_{v,min} (10^6 psi)</td>
<td>F_{ax} (psi)</td>
<td>F_{ay} (psi)</td>
<td>F_{ay} (psi)</td>
</tr>
<tr>
<td>PRG® 24F- VSM1</td>
<td>SP/SP (B)</td>
<td>2,400</td>
<td>2,400</td>
<td>740</td>
<td>740</td>
<td>300</td>
<td>1,9</td>
<td>1,8</td>
<td>0.95</td>
<td>1,700</td>
<td>650</td>
<td>260</td>
</tr>
<tr>
<td>Power Beam® 28F-E1</td>
<td>SP/SP (U)</td>
<td>2,800</td>
<td>2,300</td>
<td>805</td>
<td>805</td>
<td>300</td>
<td>2.2¹(6)</td>
<td>2.1¹(6)</td>
<td>1.1¹(6)</td>
<td>1,600</td>
<td>650</td>
<td>260</td>
</tr>
<tr>
<td>Power Beam® 28F-E2</td>
<td>SP/SP (B)</td>
<td>2,800</td>
<td>2,800</td>
<td>805</td>
<td>805</td>
<td>300</td>
<td>2.2¹(6)</td>
<td>2.1¹(6)</td>
<td>1.1¹(6)</td>
<td>1,600</td>
<td>650</td>
<td>260</td>
</tr>
<tr>
<td>Power Beam® 30F-E1(6)</td>
<td>SP/SP (U)</td>
<td>3,000</td>
<td>2,400</td>
<td>805</td>
<td>805</td>
<td>300</td>
<td>2.2¹(6)</td>
<td>2.1¹(6)</td>
<td>1.1¹(6)</td>
<td>1,750</td>
<td>650</td>
<td>260</td>
</tr>
<tr>
<td>Power Beam® 30F-E1M(6)</td>
<td>SP/SP (L)</td>
<td>3,000</td>
<td>2,400</td>
<td>805</td>
<td>805</td>
<td>300</td>
<td>2.2¹(6)</td>
<td>2.1¹(6)</td>
<td>1.1¹(6)</td>
<td>1,750</td>
<td>650</td>
<td>260</td>
</tr>
<tr>
<td>Power Beam® 30F-E2(6)</td>
<td>SP/SP (B)</td>
<td>3,000</td>
<td>3,000</td>
<td>805</td>
<td>805</td>
<td>300</td>
<td>2.2¹(6)</td>
<td>2.1¹(6)</td>
<td>1.1¹(6)</td>
<td>1,750</td>
<td>650</td>
<td>260</td>
</tr>
<tr>
<td>Power Beam® 30F-E2M(6)</td>
<td>SP/SP (B)</td>
<td>3,000</td>
<td>3,000</td>
<td>805</td>
<td>805</td>
<td>300</td>
<td>2.2¹(6)</td>
<td>2.1¹(6)</td>
<td>1.1¹(6)</td>
<td>1,750</td>
<td>650</td>
<td>260</td>
</tr>
</tbody>
</table>

Notes:
1. The combinations in this table are intended primarily for members stressed in bending due to loads applied perpendicular to the wide faces of the laminations. Allowable design values are tabulated, however, for loading both perpendicular and parallel to the wide faces of the laminations.
2. The tabulated allowable design values are for normal duration of loading. For other durations of loading, see the applicable building code. The tabulated allowable design values are for dry conditions of use. For wet conditions of use, multiply the tabulated values by the wet-use factors shown at the bottom of the table.
3. SP = Southern pine.
4. The unbalanced (U) layup is intended primarily for simple-span applications and the balanced (B) layup is intended primarily for continuous or cantilevered applications.
5. The values of F_W are based on members 5-1/8 inches in width by 12 inches in depth by 21 feet in length. For members with a larger volume, F_W shall be multiplied by a volume factor, C_v = (5.125b)^1/2 (12d)^1/2 (21L)^1/2, where b is the beam width (in.), d is the beam depth (in.), and L is the beam length between the points of zero moment (ft).
6. For non-prismatic members, members subject to impact or cyclic loading, or shear design of bending members at connections (NDS 3.4.3.3), the F_W and F_X values shall be multiplied by a factor of 0.72. The tabulated F_W values are for timbers with laminations made from a single piece of lumber across the width or multiple pieces that have been edge bonded. For timber manufactured from multiple piece laminations (across width) that are not edge bonded, value shall be multiplied by 0.4 for members with 5, 7, or 9 laminations or by 0.5 for all other members.
7. The tabulated E values include true E (also known as "shear-free E"), apparent E, and E for beam stability calculation (NDS 3.3.3.8). For calculating beam deflections, the tabulated E values shall be used unless the shear deflection is determined in addition to bending deflection based on the tabulated E_{v,min}. The axial modulus of elasticity, E_{u,b} and E_{v,min}, shall be equal to the tabulated E_{u,b},app and E_{v,min},app values.
8. The values of F_W are based on members 12 inches in depth. For depths less than 12 inches, F_W shall be permitted to be increased by multiplying by the size factor, (12/d)^1/2, where d is the beam depth in inches. When d is less than 3 inches, use the size adjustment factor for 3 inches.
9. This layup combination is limited to nominal 6 inches or less in width.
10. For members of more than 15 laminations, E_{v,min} = 2.1 x 10^6 psi, E_{u,b} = 2.0 x 10^6 psi, and E_{v,min} = 1.06 x 10^6 psi.
APA – The Engineered Wood Association is an approved national standards developer accredited by American National Standards Institute (ANSI). APA publishes ANSI standards and Voluntary Product Standards for wood structural panels and engineered wood products. APA is an accredited certification body under ISO/IEC 17065 by Standards Council of Canada (SCC), an accredited inspection agency under ISO/IEC 17020 by International Code Council (ICC) International Accreditation Service (IAS), and an accredited testing organization under ISO/IEC 17025 by IAS. APA is also an approved Product Certification Agency, Testing Laboratory, Quality Assurance Entity, and Validation Entity by the State of Florida, and an approved testing laboratory by City of Los Angeles.

APA – THE ENGINEERED WOOD ASSOCIATION
HEADQUARTERS
7011 So. 19th St. ▪ Tacoma, Washington 98466
Phone: (253) 565-6600 ▪ Fax: (253) 565-7265 ▪ Internet Address: www.apawood.org

PRODUCT SUPPORT HELP DESK
(253) 620-7400 ▪ E-mail Address: help@apawood.org

DISCLAIMER
APA Product Report® is a trademark of APA – The Engineered Wood Association, Tacoma, Washington. The information contained herein is based on the product evaluation in accordance with the references noted in this report. Neither APA, nor its members make any warranty, expressed or implied, or assume any legal liability or responsibility for the use, application of, and/or reference to opinions, findings, conclusions, or recommendations included in this report. Consult your local jurisdiction or design professional to assure compliance with code, construction, and performance requirements. Because APA has no control over quality of workmanship or the conditions under which engineered wood products are used, it cannot accept responsibility for product performance or designs as actually constructed.