1. Basis of the product report:
 - 2012 IRC: Sections R104.11 Alternative materials, and R502.1.5, R602.1.2, and R802.1.4 Structural glued laminated timber
 - ASTM D3737-12 and D3737-08 recognized by the 2018 and 2015 IBC and IRC, and 2012 IBC and IRC, respectively
 - AWPA U1-16, U1-14, and U1-11 recognized by the 2018, 2015, and 2012 IBC and IRC, respectively

2. Product description:
 Power Preserved Glulam® Beams are used as beams, headers, rafters, or purlins, and are manufactured with EWS 24F-V5M1/SP balanced layup combination in accordance with ANSI A190.1. Power Preserved Columns are manufactured with Combination #50 layup in accordance with ANSI A190.1. Power Preserved Glulam Beams are treated with Cop-Guard® (CuN) at 0.04 pcf or Clear-Guard™ (IPBC/PER) at 0.055 pcf for above ground use by Hoover Treated Wood Products, Inc. (www.frtw.com) after manufacturing. Power Preserved Columns are treated with Cop-Guard® at 0.075 pcf. The efficacy of the preservative treatment, and post-treatment inspection and quality assurance of the treatment are outside the scope of this report and the APA certification program. The adhesive used in Power Preserved Glulam Beams and Columns, as trademarked by APA, conforms to wet-use requirements of ASTM D2559.

3. Design properties:
 Table 1 lists the design properties for Power Preserved Glulam Beams. The allowable spans for Power Preserved Glulam Beams shall be in accordance with the recommendations provided by the manufacturer (www.anthonyforest.com/assets/pdf/power-preserved-glulam-load-and-design-tables.pdf) and APA Data File: Glued Laminated Beam Design Tables, Form S475 (www.apawood.org/resource-library), as applicable. Table 2 lists the design properties for Power Preserved Glulam Columns. The allowable loads for Power Preserved Columns shall be in accordance with the recommendations provided by the manufacturer (www.anthonyforest.com/assets/pdf/power-column-flyer.pdf), and APA Data File: Design of Structural Glued Laminated Timber Columns, Form Y240 (see link above), as applicable.

4. Product installation:
 Power Preserved Glulam Beams and Columns shall be installed in accordance with the recommendations provided by the manufacturer and APA Technical Notes: Glulam Connection Details, Form T300, and Preservative Treatment of Glulam Laminated Timber, Form S580 (see link above). Permissible field notching and drilling shall be in accordance
with the recommendations provided by the manufacturer and APA Technical Note: *Field Notching and Drilling of Glued Laminated Timber Beams*, Form S560 (see link above).

The American Wood Protection Association (AWPA) U1 Standard Specification F permits glulam members treated with Cop-Guard® (CuN) at a retention level of 0.04 pcf and Clear-Guard™ (IPBC/PER) at 0.055 pcf for use in AWPA use categories UC3A and UC3B for above ground applications. AWPA U1 Standard Specification F permits glulam members treated with Cop-Guard® (CuN) at a retention level of 0.075 pcf to be used in AWPA use categories UC4B and UC4C for ground contact applications.

5. Fire-rated assemblies:
Fire-rated assemblies shall be constructed in accordance with the recommendations provided by the manufacturer and APA *Fire-Rated Systems*, Form W305 (see link above). For one- or two-hour rated glulam beams, Power Preserved Glulam Beams and Columns shall be constructed in accordance with ANSI A190.1 and designed in accordance with the recommendations provided by the manufacturer and APA Technical Note: *Calculating Fire Resistance of Glulam Beams and Columns*, Form Y245 (see link above) or Chapter 16 of the 2018 *National Design Specification (NDS)*, available from American Wood Council (www.awc.org/codes-standards/publications/nds-2018).

6. Limitations:
 a) Power Preserved Glulam Beams and Columns shall be designed in accordance with the code using the design properties specified in this report.
 b) Power Preserved Glulam Beams and Columns shall have a minimum depth of 4 and 2 laminations, respectively.
 c) Power Preserved Glulam Beams treated with Cop-Guard® at 0.04 pcf and Clear-Guard™ at 0.055 pcf retention are permitted for above ground use and shall not be used in direct ground contact, water or marine applications. Power Preserved Glulam Beams treated with Clear-Guard™ shall not be installed in interior applications until the preservative solvents have been completely volatilized. Power Preserved Glulam beams treated with Cop-Guard® shall not be installed in interior applications.
 d) Power Preserved Glulam Columns treated with Cop-Guard® at 0.075 pcf retention is permitted for use in ground contact but shall not be used in direct water or marine applications. Power Preserved Glulam Columns treated with Cop-Guard® shall not be installed in interior applications.
 e) Power Preserved Glulam Beams and Columns are produced at Anthony Forest Products Company, LLC, El Dorado, AR, under a quality assurance program audited by APA prior to treatment. The efficacy of the treatment and overall post-treatment inspection and quality assurance program is certified by the treating company and third-party inspection provided by Timber Products Inspection (TPI).
 f) This report is subject to re-examination in one year.

7. Identification:
Power Preserved Glulam Beams and Columns described in this report are identified by a label bearing the manufacturer's name (Anthony Forest Products Company, LLC) and/or trademark, the APA assigned plant number (1079 for El Dorado, AR), the product standard (ANSI A190.1), the APA logo, the report number PR-L282, the preservative treatment by Hoover, the retention level in pcf, the AWPA use category and a means of identifying the date of manufacture.
Table 1. Allowable Design Values for Power Preserved Glulam Beams for Normal Duration of Load (1,2)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Species Outer/ Core (Bal or Unbal)(3)</th>
<th>Wet-use factor</th>
<th>Axially Loaded</th>
<th>Fasteners</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Power Preserved Glulam 24F V5M1/SP (B)</td>
<td></td>
<td></td>
<td>SG</td>
</tr>
<tr>
<td></td>
<td>SP/SP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.8</td>
<td>0.8</td>
<td>0.73</td>
</tr>
</tbody>
</table>

(1) The combinations in this table are intended primarily for members stressed in bending due to loads applied perpendicular to the wide faces of the laminations. Allowable design values are tabulated, however, for loading both perpendicular and parallel to the wide faces of the laminations.

(2) The tabulated allowable design values are for normal duration of loading. For other durations of loading, see the applicable building code. The tabulated allowable design values are for dry conditions of use. For wet conditions of use, multiply the tabulated values by the wet-use factors shown at the bottom of the table.

(3) SP = Southern pine.

(4) The unbalanced (U) layup is intended primarily for single-span applications and the balanced (B) layup is intended primarily for continuous or carrièr edged applications.

(5) The values of F_w are based on members 5-1/8 inches in width by 12 inches in depth by 21 feet in length. For members with a larger volume, F_w shall be multiplied by a volume factor, $C_v = (5.125b)^{1/6} (12/d)^{1/3} (21/L)^{1/3}$, where b is the beam width (in.), d is the beam depth (in.), and L is the beam length between the points of zero moment (ft).

(6) The combinations in this table are intended primarily for continuous or cantilevered applications. For non-prismatic members, members subject to impact or cyclic loading, or shear design of bending members at connections (NDS 3.3.3.3), the F_w and F_v values shall be multiplied by a factor of 0.72. The tabulated F_v values are for timbers with laminations made from a single piece of lumber across the width or multiple pieces that have been edge bonded. For timber manufactured from multiple piece laminations (across width) that are not edge bonded, value shall be multiplied by 0.4 for members with 5, 7, or 9 laminations or by 0.5 for other members.

(7) The tabulated E values include true E (also known as "shear-free E", apparent E, and E for beam stability calculation (NDS 3.3.3.8). For calculating beam deflections, the tabulated E_{ax} values shall be used unless the shear deflection is determined in addition to bending deflection based on the tabulated E_{ax}. The axial modulus of elasticity, E_{ax} and E_{ax} shall be equal to the tabulated E_{ax} and E_{ax} values.

(8) The values of F_w are based on members 12 inches in depth. For depths less than 12 inches, F_w shall be permitted to be increased by multiplying by the flat use factor, $(12/d)^{1/3}$, where d is the beam depth in inches. When d is less than 3 inches, use the size adjustment factor for 3 inches.
Table 2. Allowable Design Values for Power Preserved Columns for Normal Duration of Load \(^{(1)}\)

<table>
<thead>
<tr>
<th>Combination Symbol</th>
<th>Species(^{(2)})</th>
<th>Grade</th>
<th>All Loading</th>
<th>Axially Loaded</th>
<th>Bending about Y-Y Axis</th>
<th>Bending about X-X Axis</th>
<th>Fasteners</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Modulus of Elasticity(^{(3)})</td>
<td>Tension Perpendicular to Grain</td>
<td>Compression Parallel to Grain</td>
<td>2 or More Lams</td>
<td>4 or More Lams</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(E_{x\text{true}}) or (E_{x\text{true}}) (10^6 psi)</td>
<td>(E_{y\text{true}}) or (E_{y\text{true}}) (10^6 psi)</td>
<td>(E_{x\text{true}}) or (E_{x\text{true}}) (10^6 psi)</td>
<td>(F_{c}) (psi)</td>
<td>(F_{t}) (psi)</td>
</tr>
<tr>
<td>Power Preserved Glulam, EWS 50</td>
<td>SP</td>
<td>N1D14</td>
<td>2.0</td>
<td>1.9</td>
<td>1.00</td>
<td>740</td>
<td>1,550</td>
</tr>
</tbody>
</table>

Wet-use factors 0.833 0.53 0.8 0.73 0.8 0.875 0.8 0.875 see NDS

\(^{(1)}\) The tabulated allowable design values are for normal duration of loading. For other durations of loading, see applicable building code. The tabulated allowable design values are for dry conditions of use. For wet conditions of use, multiply the tabulated values by the factors shown at the bottom of the table.

\(^{(2)}\) SP = South pine.

\(^{(3)}\) The tabulated \(E\) values include axial modulus of elasticity for column stability calculation \(E_{x\text{true}}\) \(\text{NDS 3.7.1}\). For calculating column deflections due to lateral loads, the tabulated \(E_{x\text{true}}\) \(\text{or } E_{y\text{true}}\) values shall be used unless the shear deflection is determined in addition to bending deflection based on the tabulated \(E_{x\text{true}}\) \(\text{or } E_{y\text{true}}\).

\(^{(4)}\) The values of \(F_{c}\) are based on members 12 inches in depth. For depths less than 12 inches, \(F_{c}\) shall be permitted to be increased by multiplying by the size adjustment factor, \((12/d)\), where \(d\) is the beam depth in inches. When \(d\) is less than 3 inches, use the size adjustment factor for 3 inches.

\(^{(5)}\) For non-prismatic members, notch members, members subject to impact or cyclic loading, or shear design of bending members at connections \(\text{NDS 3.4.3.3}\), the tabulated \(F_{c}\) \(\text{and } F_{v}\) values shall be multiplied by 0.72.

\(^{(6)}\) The tabulated \(F_{v}\) values are for members of 4 or more lams. The tabulated \(F_{v}\) values shall be multiplied by a factor of 0.95 for 3 lams and 0.84 for 2 lams. For members with 5, 7, or 9 lams manufactured from multiple-piece lams with unbonded edge joints, the tabulated \(F_{v}\) values shall be multiplied by a factor of 0.4. For all other members manufactured from multiple-piece lams with unbonded edge joints, the tabulated \(F_{v}\) values shall be multiplied by a factor of 0.5. This adjustment shall be cumulative with the adjustment specified in Footnote 5.

\(^{(7)}\) The values of \(F_{c}\) are based on members 5-1/8 inches in width by 12 inches in depth by 21 feet in length. For members with a larger volume, \(F_{c}\) shall be multiplied by a volume factor, \(C_{V} = (5.125/5) \times (12/5) \times (21/5)\), where \(b\) is the beam width (in.), \(d\) is the beam depth (in.), and \(L\) is the beam length between the points of zero moment (ft).

\(^{(8)}\) When the member depth is greater than 15 inches, the tabulated \(F_{c}\) values shall be multiplied by a factor of 0.88. This factor shall be cumulative with the volume factor, \(C_{V}\), specified in Footnote 7.
APA – The Engineered Wood Association is an approved national standards developer accredited by American National Standards Institute (ANSI). APA publishes ANSI standards and Voluntary Product Standards for wood structural panels and engineered wood products. APA is an accredited certification body under ISO/IEC 17065 by Standards Council of Canada (SCC), an accredited inspection agency under ISO/IEC 17020 by International Code Council (ICC) International Accreditation Service (IAS), and an accredited testing organization under ISO/IEC 17025 by IAS. APA is also an approved Product Certification Agency, Testing Laboratory, Quality Assurance Entity, and Validation Entity by the State of Florida, and an approved testing laboratory by City of Los Angeles.

APA – THE ENGINEERED WOOD ASSOCIATION
HEADQUARTERS
7011 So. 19th St. ▪ Tacoma, Washington 98466
Phone: (253) 565-6600 • Fax: (253) 565-7265 • Internet Address: www.apawood.org

PRODUCT SUPPORT HELP DESK
(253) 620-7400 ▪ E-mail Address: help@apawood.org

DISCLAIMER
APA Product Report® is a trademark of APA – The Engineered Wood Association, Tacoma, Washington. The information contained herein is based on the product evaluation in accordance with the references noted in this report. Neither APA, nor its members make any warranty, expressed or implied, or assume any legal liability or responsibility for the use, application of, and/or reference to opinions, findings, conclusions, or recommendations included in this report. Consult your local jurisdiction or design professional to assure compliance with code, construction, and performance requirements. Because APA has no control over quality of workmanship or the conditions under which engineered wood products are used, it cannot accept responsibility for product performance or designs as actually constructed.