1. Basis of the product report:
 - 2012 IRC: Sections R104.11 Alternative materials, and R502.1.5, R602.1.2, and R802.1.4 Structural glued laminated timber
 - 2015 ANSI/AWC Special Design Provisions for Wind and Seismic (SDPWS)
 - ASTM D3737-12 and D3737-08 recognized by the 2018 and 2015 IBC and IRC, and 2012 IBC and IRC, respectively
 - ASTM D7672-14 and D7672-12 recognized by the 2018 IBC and IRC, and 2015 IBC and IRC, respectively
 - ANSI 117 Specification for Structural Glued Laminated Timber of Softwood Species
 - APA Reports T2011P-72 and T2019P-31, and other qualification data

2. Product description:
 QB 30F-E3 glulam beams are used as beams, headers, rafters, or purlins, and are manufactured with a proprietary balanced layup combination documented in the in-plant manufacturing standard. QB 30F-E3 glulam beams use conventional laminating lumber grades of Douglas fir-Larch in the tension and compression zones, and Southern pine in the core with the exception that the outermost tension and outermost compression laminations are made of laminated veneer lumber (LVL), as permitted by ANSI A190.1. The LVL laminations are supplied by manufacturers recognized by APA and identified in QB’s in-plant manufacturing standard approved by APA. The LVL complies with the control values listed in the manufacturing standard and is manufactured in full length and width laminations, and in net thicknesses of 1-1/2 inches from wood veneers. All veneer grain is parallel to the length of the billets. The LVL are bonded with another LVL or lumber laminations using exterior-type adhesives in compliance with ANSI 405. QB 30F-E3 glulam beams have a minimum depth of 7-1/4 inches and a maximum depth of 48 inches.

QB RIM is a glulam rim board manufactured in accordance ANSI A190.1 (www.apawood.org/resource-library) using Combination 1 (L3/DF) and then resawn to a specific thickness without re-grading. The depth of QB RIM shall be 20 inches or less.

3. Design properties:
 Table 1 lists the allowable design properties for QB 30F-E3 glulam beams. The allowable spans for QB 30F-E3 glulam beams shall be in accordance with the recommendations provided by the manufacturer (www.qbcorp.com), and APA Glued Laminated Beam Design Tables, Form S475 (see link above), as applicable. Table 2 lists the allowable properties for QB RIM in rim board applications. The allowable bending stress, tensile stress, and compressive stress parallel to grain for Combination 1 glulams may not be applicable to QB RIM.
4. Product installation:
QB 30F-E3 glulam beams shall be installed in accordance with the recommendations provided by the manufacturer and APA *Glulam Connection Details*, Form T300 (see link above). Permissible field notching and drilling shall be in accordance with the recommendations provided by the manufacturer, and with APA *Field Notching and Drilling of Glued Laminated Timber Beams*, Form S560 (see link above).

QB RIM shall be installed in accordance with the recommendations provided by the manufacturer. Permissible field notching and drilling shall be in accordance with the recommendations provided by the manufacturer.

5. Fire-rated assemblies:
Fire-rated assemblies shall be constructed in accordance with the recommendations provided by the manufacturer, and APA *Design/Construction Guide: Fire-Rated Systems*, Form W305 (see link above). For one- or two-hour rated glulam beams, the QB 30F-E3 glulam beams shall be constructed in accordance with ANSI A190.1 and designed in accordance with the manufacturer and APA Technical Note: *Calculating Fire Resistance of Glulam Beams and Columns*, Form Y245 (see link above) or Chapter 16 of the 2018 National Design Specification (NDS), available from American Wood Council (www.awc.org/codes-standards/publications/nds-2018).

The provisions of 2018 and 2015 IBC Section 722 Calculated fire resistance and 2012 IBC Section 722.6.3 Design of fire-resistant exposed wood members shall be applicable to QB RIM. Fire-rated rim board assemblies shall be constructed in accordance with the recommendations provided by APA Data File: *APA Rim Board in Fire-Rated Assemblies*, Form D350 (see link above) or the manufacturer.

6. Limitations:
a) QB 30F-E3 glulam beams shall be designed in accordance with the code using the design properties specified in this report. QB RIM shall be designed in accordance with the applicable code using the design properties specified in this report.
b) QB 30F-E3 glulam beams shall have a minimum depth of 7-1/4 inches and a maximum depth of 48 inches.
c) QB RIM shall be limited to 1-1/2 or 3-1/2 inches in thickness and a maximum of 20 inches in depth.
d) QB RIM shall be limited to applications where the rim board is continuously supported for the full length and thickness of the product.
e) QB RIM is limited to dry service conditions where the average equilibrium moisture content of solid-sawn lumber is less than 16 percent.
f) QB 30F-E3 glulam beams and QB RIM are produced at QB’s Salmon, Idaho facilities under a quality assurance program audited by APA.
g) This report is subject to re-examination in one year.

7. Identification:
QB 30F-E3 glulam beams and QB RIM described in this report are identified by a label bearing the manufacturer’s name (QB) and/or trademark, the APA assigned plant number (1102), the product standard (ANSI A190.1), the APA logo, the combination symbol, the report number PR-L305, and a means of identifying the date of manufacture.
Table 1. Allowable Design Values for QB 30F-E3 Glulam Beams for Normal Duration of Load(1)(2)(3)(4)

<table>
<thead>
<tr>
<th>Species</th>
<th>Extreme Fiber in Bending(5)</th>
<th>Compression Perpendicular to Grain</th>
<th>Shear Parallel to Grain(6)</th>
<th>Modulus of Elasticity(5)</th>
<th>Axially Loaded</th>
<th>Fasteners</th>
<th>Specific Gravity for Dowel-Type Fastener Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol</td>
<td>Fc* (psi)</td>
<td>Fc* (psi)</td>
<td>Fc* (psi)</td>
<td>Ec (psi)</td>
<td>Fy (psi)</td>
<td>Fy (psi)</td>
<td>F (psi)</td>
</tr>
<tr>
<td>LVL(6)</td>
<td>3,000</td>
<td>3,000</td>
<td>650(10)</td>
<td>300</td>
<td>2.2</td>
<td>2.1</td>
<td>1.11</td>
</tr>
<tr>
<td>SP</td>
<td>2,600</td>
<td>2,600</td>
<td>1,700</td>
<td>650</td>
<td>2.1</td>
<td>2.0</td>
<td>1.06</td>
</tr>
</tbody>
</table>

Wet-use factor 0.8 0.53 0.875 0.833 0.8 0.53 0.875 0.833 0.8 0.73 see NDS

(1) The combinations in this table are intended primarily for members stressed in bending due to loads applied perpendicular to the wide faces of the laminations. Allowable design values are tabulated, however, for loading both perpendicular and parallel to the wide faces of the laminations.
(2) The tabulated allowable design values are for normal duration of loading. For other durations of loading, see the applicable building code. The tabulated allowable design values are for dry conditions of use. For wet conditions of use, multiply the tabulated values by the wet-use factors shown at the bottom of the table.
(3) DF = Douglas fir-Larch, SP = Southern pine, and LVL = Laminated veneer lumber in accordance with the manufacturing standard.
(4) LB is the beam width (in.), d is the beam depth (in.), and L is the beam length between the points of zero moment (ft).
(5) The values of Ec are based on members 5-1/8 inches in width by 12 inches in depth by 21 feet in length. For members with a larger volume, Ec shall be multiplied by a factor of 0.72.
(6) The values of Ec are for members with a larger volume. For members with a larger volume, Ec shall be multiplied by a factor of 0.72.
(7) The tabulated E values include true Ec (also known as "shear-free Ec"), apparent Ec, and Ec for beam stability calculation (NDS 3.3.3.8). For calculating beam deflections, the tabulated Ec values shall be multiplied by 0.72. The tabulated Ec values for laminations made from a single piece of lumber across the width or multiple pieces that have been edge bonded. For timber manufactured from multiple piece laminations (across width) that are not edge bonded, value shall be multiplied by 0.4 for members with 5, 7, or 9 laminations or by 0.5 for all other members.
(8) The tabulated E values include true Ec (also known as "shear-free Ec"), apparent Ec, and Ec for beam stability calculation (NDS 3.3.3.8). For calculating beam deflections, the tabulated Ec values shall be multiplied by 0.72. The tabulated Ec values for laminations made from a single piece of lumber across the width or multiple pieces that have been edge bonded. For timber manufactured from multiple piece laminations (across width) that are not edge bonded, value shall be multiplied by 0.4 for members with 5, 7, or 9 laminations or by 0.5 for all other members.
(9) The tabulated E values include true Ec (also known as "shear-free Ec"), apparent Ec, and Ec for beam stability calculation (NDS 3.3.3.8). For calculating beam deflections, the tabulated Ec values shall be multiplied by 0.72. The tabulated Ec values for laminations made from a single piece of lumber across the width or multiple pieces that have been edge bonded. For timber manufactured from multiple piece laminations (across width) that are not edge bonded, value shall be multiplied by 0.4 for members with 5, 7, or 9 laminations or by 0.5 for all other members.
(10) The tabulated E values include true Ec (also known as "shear-free Ec"), apparent Ec, and Ec for beam stability calculation (NDS 3.3.3.8). For calculating beam deflections, the tabulated Ec values shall be multiplied by 0.72. The tabulated Ec values for laminations made from a single piece of lumber across the width or multiple pieces that have been edge bonded. For timber manufactured from multiple piece laminations (across width) that are not edge bonded, value shall be multiplied by 0.4 for members with 5, 7, or 9 laminations or by 0.5 for all other members.

Table 2. Allowable Design Properties for QB RIM (1,2)

<table>
<thead>
<tr>
<th>Product</th>
<th>Thickness (in.)</th>
<th>Horizontal Load Transfer Capacity (lbf/ft)(2,4)</th>
<th>Uniform (lbf/ft)</th>
<th>Vertical Load(2)</th>
<th>Concentrated (lbf)(6)</th>
<th>Lateral Resistance for 1/2-inch-dia. Lag Screws (lbf)(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QB RIM</td>
<td>1-1/2</td>
<td>220</td>
<td>2,700</td>
<td>NA</td>
<td>2,800</td>
<td>7,200</td>
</tr>
<tr>
<td></td>
<td>3-1/2</td>
<td>220</td>
<td>7,400</td>
<td>7,100</td>
<td>7,200</td>
<td>7,200</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 lbf = 0.454 kg, 1 psi = 6.9 kPa.
(1) The rim board depth shall not exceed 20 inches. Only permitted in applications where the rim board is continuously supported for the full length and thickness of the product.
(2) All design values are applicable to the normal load duration (10 years) for wood products, except for the horizontal load transfer capacity, which is based on the short-term load duration (10 minutes). Design values shall be adjusted for other load durations in accordance with the applicable building code except that the uniform vertical load capacity and concentrated vertical load capacity are not permitted to be increased for any load durations shorter than the normal load duration (10 years).
(3) Horizontal load transfer capacity shall be increased by a factor of 1.4 when subjected to wind loads. Toe-nailed connections are not limited by the 150 lbf/ft lateral load capacity noted for Seismic Design Categories D, E and F in Section 4.1.7 of the Special Design Provisions for Wind and Seismic (SDPWS).
(4) QB RIM shall be permitted to be substituted for solid-sawn framing in horizontal wood diaphragms in accordance with Table 2.4A of the 2015 SDPWS (for 2018 and 2015 IBC) and 2008 SDPWS (for 2012 IBC), provided the maximum shear values for the diaphragms are limited to the allowable lateral capacity noted in this table.
(5) It is common (0.13 x 2-1/2 inches) nails shall be used to connect the floor sheathing to QB RIM and to connect QB RIM to the sill plate (taped). Two 8d box (0.113 x 2-1/2 inches) or common (0.131 x 2-1/2 inches) nails are required to connect each floor joist to the sill plate, and two 8d box (0.113 x 2-1/2 inches) or common (0.131 x 2-1/2 inches) nails are required to connect the 1-1/2-inch-thick QB RIM to the end of each floor joist. Stant nails shall be installed to connect the floor joist to the 3-1/2-inch-thick QB RIM.
(6) Compression perpendicular-to-grain capacities of the sill plate and floor sheathing must be checked and must not be exceeded.
(7) The concentrated vertical load capacity is based on a 4-1/2-inch bearing length.
APA – The Engineered Wood Association is an approved national standards developer accredited by American National Standards Institute (ANSI). APA publishes ANSI standards and Voluntary Product Standards for wood structural panels and engineered wood products. APA is an accredited certification body under ISO/IEC 17065 by Standards Council of Canada (SCC), an accredited inspection agency under ISO/IEC 17020 by International Code Council (ICC) International Accreditation Service (IAS), and an accredited testing organization under ISO/IEC 17025 by IAS. APA is also an approved Product Certification Agency, Testing Laboratory, Quality Assurance Entity, and Validation Entity by the State of Florida, and an approved testing laboratory by City of Los Angeles.

APA – THE ENGINEERED WOOD ASSOCIATION
HEADQUARTERS
7011 So. 19th St. • Tacoma, Washington 98466
Phone: (253) 565-6600 • Fax: (253) 565-7265 • Internet Address: www.apawood.org

PRODUCT SUPPORT HELP DESK
(253) 620-7400 • E-mail Address: help@apawood.org

DISCLAIMER
APA Product Report® is a trademark of APA – The Engineered Wood Association, Tacoma, Washington. The information contained herein is based on the product evaluation in accordance with the references noted in this report. Neither APA, nor its members make any warranty, expressed or implied, or assume any legal liability or responsibility for the use, application of, and/or reference to opinions, findings, conclusions, or recommendations included in this report. Consult your local jurisdiction or design professional to assure compliance with code, construction, and performance requirements. Because APA has no control over quality of workmanship or the conditions under which engineered wood products are used, it cannot accept responsibility for product performance or designs as actually constructed.