Joint Evaluation Report

DIVISION: 06 00 00—WOOD, PLASTICS AND COMPOSITES
SECTION: 06 17 25—LAMINATED STRAND LUMBER
SECTION: 06 17 27—ORIENTED STRAND LUMBER

REPORT HOLDER:
NORBORD INC.

EVALUATION SUBJECT:

STRUCTURAL COMPOSITE LUMBER:
1.7E DURASTRAND® LAMINATED STRAND LUMBER (LSL);
1.5E DURASTRAND® ORIENTED STRAND LUMBER (OSL);
1.3E DURASTRAND® ORIENTED STRAND LUMBER (OSL); AND
0.8E DURASTRAND® ORIENTED STRAND LUMBER (OSL)

Look for the trusted marks of Conformity!

“2014 Recipient of Prestigious Western States Seismic Policy Council (WSSPC) Award in Excellence”

ICC-ES Evaluation Reports are not to be construed as representing aesthetics or any other attributes not specifically addressed, nor are they to be construed as an endorsement of the subject of the report or a recommendation for its use. There is no warranty by ICC Evaluation Service, LLC, express or implied, as to any finding or other matter in this report, or as to any product covered by the report.

Copyright© 2019 ICC Evaluation Service, LLC and APA—The Engineered Wood Association. All rights reserved.
Durastrand is a structural composite lumber product composed of wood strands bonded together utilizing heat, pressure and adhesives. The finished product is available in thicknesses ranging from 1 1/4 inches (44 mm) to 5 1/4 inches (133 mm), except for the 0.8E Durastrand OSL, which has a thickness of 1 1/4 inches (32 mm).

The attributes of the Durastrand SCL have been verified as conforming to the provisions of (i) CALGreen Sections A4.404.3 for efficient framing techniques; (ii) ICC 700-2015 and ICC 700-2012 Section 608.1(2), 11.608.1(2) and 12(A),608.1 for resource-efficient materials; and (iii) ICC 700-2008 Section 607.1(2) for resource-efficient materials.

Not that decisions on compliance for those areas rest with the user of this report. The user is advised of the project-specific provisions that may be contingent upon meeting specific conditions, and the verification of those conditions is outside the scope of this report. These codes or standards often provide supplemental information as guidance.

3.2 Material:

Durastrand consists of three layers: two face layers having strands oriented in the longitudinal direction of the member, and a core with strands oriented in the same plane perpendicular (0.8E OSL only) or parallel to the face layers. Durastrand is manufactured from strands of a combination of wood species including aspen, lodgepole pine and birch. During fabrication, the strands are dried, resinated with adhesives having bond durability compatible with ASTM D5456 for Exposure 1 conditions, and formed into loose mats with three oriented layers. The loose mats of 1.7E LSL, 1.5E OSL and 1.3E OSL are pressed into billets in a continuous press. Loose mats of 0.8E OSL are pressed in a multi-opening press. The approved quality control manuals specify proprietary production parameters such as flake quality, flake grading, resin formulation, resin content, lay-up procedures, pressing parameters and quality control issues.

Durastrand is available in depths up to 24 inches (610 mm) and lengths up to 48 feet (14.63 m) for 1.7E LSL, 1.5E OSL and 1.3E OSL. The 0.8E Durastrand OSL is available in depths up to 24 inches (610 mm) and lengths up to 24 feet (7.32 m).

4.0 DESIGN AND INSTALLATION

4.1 General:

Durastrand may be installed in engineered or conventional wood-framed construction. Application and installation of Durastrand must comply with this report and the applicable building code. Drawings and/or manufacturer’s published installation instructions for the erection and installation of
Durastrand products must be available on the project jobsite during installation.

4.2 Design and Allowable Stresses:
For Durastrand used as beams, headers, joists or rafters, the design provisions for wood construction noted in Chapter 23 of the IBC, and in the ANSI/AWC National Design Specification® for Wood Construction (NDS), are applicable, unless otherwise noted in this report. Table 1 presents allowable unit stresses for dry conditions of use in engineered applications. With the exception of those values given for 0.8E OSL, values given in Table 1 for edgewise bending, \(F_e \), and tension parallel-to-grain, \(F_t \), must be adjusted for depth and length effects in accordance with Footnotes 4 and 6, respectively. Table 2 presents allowable spacing for nails. Unless otherwise noted, adjustment to the design stresses must be in accordance with the applicable code.

Durastrand used as rim board must be designed and installed in accordance with Section 4.3.

Allowable withdrawal values for nails installed into Durastrand are as provided in the NDS for solid-sawn lumber species with the equivalent specific gravity as given in Table 3. Allowable lateral load values (perpendicular and parallel to the long axis of Durastrand) for nails are equivalent to those for solid-sawn lumber species with the equivalent specific gravity as shown in Table 3.

The allowable lateral load value for machine bolts installed into the wide face of the product is as provided in the NDS for solid-sawn lumber species with the equivalent specific gravity as given in Table 3. Use of the machine bolts must be limited to design procedures set forth in the applicable code for solid-sawn wood.

4.3 Rim Board:
When Durastrand is used as rim board, it is an alternative material to the solid blocking details for light-framed wood construction given in Section 2308.4.2.3 of the 2018 and 2015 IBC (Section 2308.8.2 of the 2012, 2009, and 2006 IBC) and Section R502.7 of the IRC. When it is used in light-framed wood construction complying with Section 2308 of the IBC or Section R502 of the IRC, Durastrand is permitted to be used where the IBC and the IRC permit nominally 2-inch-thick solid-sawn lumber at the boundaries of floor diaphragms.

4.3.1 Design Values for Rim Board: Values for allowable vertical, and in-plane lateral load transfer capacity of Durastrand rim board are given in Table 4. Toe-nailed connections required in Section 4.3.2 are not limited by the 150 plf (2189 N/m) lateral load capacity noted for Seismic Design Categories D, E and F in 2006 IBC Section 2305.1.4 and Section 4.1.7 of the ANSI/AWC Special Design Provisions for Wind and Seismic (SDPWS). No duration of load increase is permitted to be applied to these design values.

For design of connections other than those required in Section 4.3.2, mechanical connections in Durastrand rim board have allowable lateral and withdrawal design values as provided by the NDS for lumber having equivalent specific gravities as given in Table 3. Minimum allowable nail spacing values are given in Table 2. Adjustment factors in accordance with the NDS must be applied as applicable.

Exception: Lag screw connections between Durastrand rim board and deck ledgers have an allowable lateral load of 400 pounds (1.78 kN) per lag screw, under the following conditions:

a. Lag screws must have a minimum nominal diameter of \(\frac{1}{2} \) inch (12.7 mm), and sufficient length such that the full diameter of the lag screw penetrates through the rim board (the tapered tip must pass completely through the rim board).

b. Deck ledgers must consist of minimum nominally 2-by-6 lumber having a minimum assigned specific gravity of 0.42.

c. Sheathing between the rim board and the deck ledger must consist of wood structural panels meeting PS-1 or PS-2, and be attached to the rim board in accordance with the applicable code.

d. One flat washer must be used between the deck ledger and the lag screw head.

e. Adjustment factors in accordance with the NDS must be applied as applicable.

4.3.2 Installation of Rim Board: Durastrand rim board must be laterally supported by floor sheathing at the top, and continuously supported across the full width at the bottom. The rim board must be located at the joist elevation parallel or perpendicular to the joist framing.

Durastrand rim board must be the full depth of the joist space and installed in minimum continuous 8-foot-long (2.44 m) segments for the length of the wall. It must be secured to the top of the sill plate with 8d common nails toe-nailed along the base of the rim board at 6 inches (152 mm) on center. Where the rim board is installed perpendicular to the floor joists, a minimum of two 8d common nails must be driven through the rim board into each joist, one each at the top and bottom. Additionally, one 8d common nail must be driven through the bottom of the joist on each side, into the sill plate. Floor sheathing must be applied over the rim board and floor joists, such that the edge of the sheathing is flush with the exterior face of the rim board, and must be nailed to the top edge of the rim board with 8d common nails at 6 inches (152 mm) on center. Notches are not permitted in Durastrand rim board.

Holes are permitted in accordance with the rim board hole specifications provided in APA Performance Rated I-Joists, Form Z725. Durastrand rim board is used for any combination of the following rim board applications:

1. To transfer, from above to below, all vertical loads at the rim board location.
2. To provide diaphragm attachment (sheathing to top edge of rim board).
3. To transfer in-plane lateral loads from the diaphragm to the wall plate below.
4. To provide lateral support to the joist or rafter (resistance against rotation) through attachment to the joist or rafter.
5. To provide closure for ends of joists or rafters.
6. To provide attachment base for siding and/or exterior deck ledger.

5.0 CONDITIONS OF USE
The Durastrand described in this report complies with, or is a suitable alternative to what is specified in, those codes listed in Section 1.0 of this report, subject to the following conditions:

5.1 Installation must comply with the applicable code, the manufacturer’s published installation instructions, and this report. If there is a conflict between the manufacturer’s installation instructions and this report, this report governs.
5.2 Durastrand must be limited to use in interior applications where the average moisture content of sawn lumber is less than 16 percent.

5.3 When application is made for a permit, design calculations and details for specific applications, based on design values published within this report, must be furnished to the code official to verify compliance with this report and the applicable code. The documents must be prepared by a registered design professional where required by the statutes of the jurisdiction in which the project is to be constructed.

5.4 0.8E OSL Durastrand is manufactured by Norbord Inc. at their facility located at 100 Mile House, British Columbia, Canada, under a quality control program with inspections by ICC-ES and APA—The Engineered Wood Association.

5.5 1.7E LSL, 1.5E OSL and 1.3E OSL are manufactured by Norbord Inc. at their facility located in Grande Prairie, Alberta, Canada, under a quality control program with inspections by ICC-ES and APA—The Engineered Wood Association.

6.0 EVIDENCE SUBMITTED

6.1 Data in accordance with the ICC-ES Acceptance Criteria for Rim Board Products (AC124), dated October 2016 (Editorially revised March 2018), and with the ICC-ES Acceptance Criteria for Structural Wood-based Products (AC47), dated June 2017 (Editorially revised March 2018).

7.0 IDENTIFICATION

7.1 All Durastrand products covered by this report are identified by a stamp which includes the manufacturer’s name (see Figure 1) and/or trademark (see Figure 2), the product trade name (1.7E Durastrand LSL, 1.5E Durastrand OSL, 1.3E Durastrand OSL or 0.8E Durastrand OSL), the number of this report (ESR-1053), the thickness, the production shift and date of manufacture, and the name of the inspection agency (APA).

7.2 The report holder’s contact information is the following:

NORBORD INC.
1 TORONTO STREET, SUITE 600
TORONTO, ONTARIO M5C 2W4
CANADA
(416) 365-0700
www.norbord.com

TABLE 1—DURASTRAND MAXIMUM ALLOWABLE STRESSES

<table>
<thead>
<tr>
<th>GRADE</th>
<th>MODULUS OF ELASTICITY7 (106 psi)</th>
<th>AXIAL (psi)</th>
<th>JOIST/BEAM EDGE LOADING (psi)</th>
<th>PLANK FACE LOADING (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>F$^h, 6$</td>
<td>Fb14</td>
<td>Fv</td>
</tr>
<tr>
<td>1.7E</td>
<td>1.7</td>
<td>2,050</td>
<td>2,150</td>
<td>1,200</td>
</tr>
<tr>
<td>1.5E</td>
<td>1.5</td>
<td>1,750</td>
<td>1,750</td>
<td>1,150</td>
</tr>
<tr>
<td>1.3E</td>
<td>1.3</td>
<td>1,300</td>
<td>1,625</td>
<td>1,150</td>
</tr>
<tr>
<td>0.8E</td>
<td>0.8</td>
<td>680</td>
<td>1,130</td>
<td>1,415</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 psi = 6.89 kPa.

1 Allowable stresses are based on a moisture content of less than 16 percent.

2 For simple span joists or beams uniformly loaded on edge, deflection is calculated as follows:

$$\Delta = \frac{270wL^4}{Ebd^3} + \frac{28.8wL^2}{Eb}$$

For simple span members uniformly loaded on face, deflection is calculated as follows:

$$\Delta = \frac{270wL^4}{Ebd^3} + \frac{86.0wL^2}{Eb}$$

Where:

Δ is deflection, inches

w is uniform load, lbf/ft

L is span, feet

B is beam width, inches

D is beam depth, inches

E is the tabulated Modulus of Elasticity, psi.

3 Edgewise Fb value for 0.8E OSL is applicable to a 16-inch beam depth or less.

4 Edgewise Fb values for 1.7E LSL, 1.5E OSL and 1.3E OSL are for 12-inch beam depth; Fb values for depths d (inches), other than 12 inches shall be multiplied by the factor, (12/d)$^{0.25}$. For depths less than 2.5 inches, the factor for 2.5-inch beam depth shall be used.

5 Ft value for 0.8E OSL is applicable to lengths up to 24 feet.

6 Ft values for 1.7E LSL, 1.5E OSL, and 1.3E OSL are applicable to 4-foot length or less; Ft values for lengths L (feet) greater than 4 feet shall be multiplied by the factor, (A/L)$^{0.35}$.

7 Modulus of elasticity and compression perpendicular-to-grain values are not permitted to be increased for load duration.
For SI: 1 inch = 25.4 mm.

Multiple rows of nails are allowed in the narrow face, with a minimum of \(\frac{1}{2} \)-inch spacing between rows and when applied to the edge, rows to be equal distance from centerline.

TABLE 3—EQUIVALENT SPECIFIC GRAVITY FOR DESIGN OF FASTENERS IN DURASTRAND\(^1\)

<table>
<thead>
<tr>
<th>GRADE</th>
<th>NAILS AND WOOD SCREWS</th>
<th>BOLTS AND LAG SCREWS(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Installed in Edge</td>
<td>Installed in Face</td>
</tr>
<tr>
<td></td>
<td>Installed in Edge</td>
<td>Installed in Face</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7E</td>
<td>0.44 (red pine)</td>
<td>0.51 (mixed southern pine)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5E</td>
<td>0.44 (red pine)</td>
<td>0.50 (Douglas fir-larch)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3E</td>
<td>0.44 (red pine)</td>
<td>0.49 (Douglas fir-larch North)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8E</td>
<td>0.32 (northern white cedar)</td>
<td>0.43 (hem-fir)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Allowable connection design values are as provided by the NDS for lumber having equivalent specific gravities as shown.

When loading at an angle to the grain, the lateral capacity for a bolted connection is calculated using the Hankinson formula in Appendix J of the NDS.

TABLE 4—DURASTRAND ALLOWABLE LOADS FOR RIM BOARD APPLICATIONS\(^{1, 2, 3}\)

<table>
<thead>
<tr>
<th>GRADE</th>
<th>MINIMUM THICKNESS (in)</th>
<th>VERTICAL LOAD (^4)</th>
<th>LATERAL CAPACITY(^5, 6, 7, 8) (pounds per foot)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Distributed (pounds per foot)</td>
<td>Concentrated (pounds)</td>
</tr>
<tr>
<td>0.8E</td>
<td>1(\frac{1}{4})</td>
<td>Depth ≤ 16 in. 24 in. ≥ Depth > 16 in.</td>
<td>Depth ≤ 16 in. 24 in. ≥ Depth > 16 in.</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 pound = 4.45 N, 1 pound per foot = 14.6 N/m.

Durastrand rim board must be installed in accordance with Section 4.3.2.

Values in this table are not permitted to be increased for load duration.

Lag screw connections between Durastrand rim board and deck ledgers have an allowable lateral load of 400 pounds (1.78 kN) per lag screw, provided the conditions under the Exception to Section 4.3.1 are met.

Compression perpendicular-to-grain capacities of the sill plate and floor sheathing must be checked, and must not be exceeded.

Allowable lateral load values are based on the condition that the rim board is supported by a sill plate or top plate consisting of minimum nominal 2\(x\)4 lumber having a minimum assigned specific gravity of 0.42.

Durastrand may be substituted for solid-sawn framing in horizontal wood diaphragms as shown in Table 4.2A and Table 4.2C of the ANSI/AWC Special Design Provisions for Wind and Seismic (SDPWS) for the 2015, 2012 and 2009 IBC, and Table 2306.3.1 of the 2006 IBC, provided the maximum shear values for the diaphragms are limited to the allowable lateral capacity noted in this table.

Toe-nailed connections are not limited by the 150 lbs/ft lateral load capacity noted for Seismic Design Categories D, E, and F in Section 4.1.7 of the ANSI/AWC SDPWS and Section 2305.1.4 of the 2006 IBC.

See Table 2 for minimum nail spacing requirements.
FIGURE 1—NORBORD LOGO

FIGURE 2—TRADEMARK FOR DURASTRAND STRUCTURAL COMPOSITE LUMBER

DISCLAIMER

APA Product Report® is a trademark of APA – The Engineered Wood Association, Tacoma, Washington. ICC-ES Evaluation Report is a trademark of ICC Evaluation Service, LLC (ICC-ES). The information contained herein is based on the product evaluation in accordance with the references noted in this report. Neither ICC-ES, nor APA or its members make any warranty, expressed or implied, or assume any legal liability or responsibility for the use, application of, and/or reference to opinions, findings, conclusions, or recommendations included in this report. The joint ICC-ES/APA Evaluation Reports are not to be construed as representing aesthetics or any other attributes not specifically addressed, nor are they to be construed as an endorsement of the subject of the report or a recommendation for its use. Consult the local jurisdiction or design professional to assure compliance with code, construction, and performance requirements. Because neither APA, nor ICC-ES, has any control over quality of workmanship or the conditions under which engineered wood products are used, it cannot accept responsibility for product performance or designs as actually constructed.