1. Basis of the product report:
 - 2012 IRC: Sections R502.1.5, R602.1.2, and R802.1.4 Structural glued laminated timber
 - ANSI 117-2020 and ANSI 117-2015 recognized by the 2021 IBC and IRC, and 2018 IBC and IRC, respectively
 - ASTM D3737-18e1, D3737-12, and D3737-08 recognized by the 2021 IBC and IRC, 2018 and 2015 IBC and IRC, and 2012 IBC and IRC, respectively
 - APA Report T2013P-06, AITC data (June 2010), and other qualification data

2. Product description:
 KING BEAM® 3000 and BOISE GLULAM® are used as beams, headers, rafters, purlins, or columns. KING BEAM 3000 30F-E4 and 30F-E5 glulam beams are manufactured with a proprietary balanced and unbalanced layup combination, respectively, documented in the in-plant manufacturing standard and approved by APA. KING BEAM 3000 30F-E4 glulam beams use conventional laminating lumber grades of Douglas fir-Larch in the tension and compression zones, and Southern pine in the core with the exception that the outermost tension and outermost compression laminations are made of a proprietary Douglas fir-Larch manufactured lumber tension lamination, as permitted by ANSI A190.1. KING BEAM 3000 30F-E5 glulam beams use the same materials as 30F-E4 glulam beams except that outermost compression laminations are made of conventional 302-24 Douglas fir-Larch laminations. KING BEAM 3000 30F-E4 and 30F-E5 glulam beams have a minimum depth of 7-1/4 inches and a maximum depth of 54 inches.

BOISE GLULAM beams and columns are manufactured in accordance with ANSI A190.1 using layup combinations recognized in the 2018 National Design Specification (NDS) Supplement or ANSI 117. BOISE GLULAM beams are manufactured in widths of 3-1/8, 3-1/2, 5-1/8, 5-1/2, 6-3/4, 8-3/4, 10-3/4, 12-1/4, and 14-1/4 inches with a minimum depth of 6 inches and lengths up to 66 feet. BOISE GLULAM columns are manufactured in widths of 3-1/8 to 10-3/4 inches, depths of 5-1/8 to 12 inches, and lengths up to 30 feet.

3. Design properties:
 Tables 1 and 2 list the allowable design properties for KING BEAM 3000, and BOISE GLULAM beams and columns. The allowable spans for KING BEAM 3000, and BOISE GLULAM beams and columns shall be in accordance with the recommendations provided by the manufacturer (www.bc.com/ewp).

4. Product installation:
 KING BEAM 3000, and BOISE GLULAM beams and columns shall be installed in accordance with the recommendations provided by the manufacturer and APA Construction
5. Fire-rated assemblies:
Fire-rated assemblies shall be constructed in accordance with the recommendations provided by the manufacturer, and APA Design/Construction Guide: Fire-Rated Systems, Form W305 (see link above). For one- or two-hour rated glulam beams, the KING BEAM 3000, and BOISE GLULAM beams and columns shall be manufactured in accordance with ANSI A190.1 and designed in accordance with the recommendations provided by the manufacturer, and APA Technical Note: Calculating Fire Resistance of Glulam Beams and Columns, Form Y245 (see link above) or Chapter 16 of the 2018 NDS.

6. Limitations:
a) KING BEAM 3000, and BOISE GLULAM beams and columns shall be designed in accordance with the code using the design properties specified in this report.
b) KING BEAM 3000 glulam beams shall have a minimum depth of 7-1/4 inches and a maximum depth of 54 inches. BOISE GLULAM beams and columns shall have a minimum depth of 6 inches.
c) KING BEAM 3000, and BOISE GLULAM beams and columns are produced at Boise Cascade’s Homedale, Idaho facilities under a quality assurance program audited by APA.
d) This report is subject to re-examination in one year.

7. Identification:
KING BEAM 3000, and BOISE GLULAM beams and columns described in this report are identified by a label bearing the manufacturer’s name (Boise Cascade) and/or trademark, the APA assigned plant number (1107), the product standard (ANSI A190.1), the APA logo, the combination symbol, the report number PR-L313, and a means of identifying the date of manufacture.
Table 1. Allowable Design Values for KING BEAM 3000 and BOISE GLULAM Beams for Normal Duration of Load \(^{(1,2)}\)

| Symbol | Species Outer/ Core \(^{(3)}\) (Bal or Unbal \(^{(4)}\)) | Beam Depth | Extreme Fiber in Bending \(^{(5)}\) | Compression Perpendicular to Grain | Shear Parallel to Grain \(^{(6)}\) | Modulus of Elasticity \(^{(7)}\) | Extreme Fiber in Bending \(^{(8)}\) | Comp. Perpendicular to Grain | Shear Parallel to Grain \(^{(9)}\) | Modulus of Elasticity \(^{(10)}\) |
|--------|---------------------------------|------------|-------------------|---------------------------------|------------------|------------------|-------------------|--------------------------------|------------------|------------------|------------------|
| K3000 | DF/SP \(^{(B)}\) | 3,000 | 3,000 | 805 805 300 | 2.4 2.3 1.22 | 1,900 650 240 | 2.1 2.0 1.06 | 1,450 1,800 | 0.55 0.53 \(^{(10)}\) |
| 30F- | DF/SP \(^{(B)}\) | 3,000 | 3,000 | 805 805 300 | 2.4 2.3 1.22 | 1,900 650 240 | 2.1 2.0 1.06 | 1,450 1,800 | 0.55 0.53 \(^{(10)}\) |
| V4 | DF/DF \(^{(U)}\) | 2,400 | 1,850 | 650 650 265 | 1.9 1.8 0.95 | 1,450 560 230 | 1.7 1.6 0.85 | 1,100 1,650 | 0.50 0.50 |
| V8 | DF/DF \(^{(B)}\) | 2,400 | 2,400 | 650 650 265 | 1.9 1.8 0.95 | 1,550 560 230 | 1.7 1.6 0.85 | 1,100 1,650 | 0.50 0.50 |
| 22F | POC/POC \(^{(U)}\) | 2,200 | 1,650 | 560 560 265 | 1.8 1.7 0.90 | 1,700 470 230 | 1.7 1.6 0.85 | 1,200 2,100 | 0.46 0.46 |
| 22F-V15 | POC/POC \(^{(B)}\) | 2,200 | 2,200 | 560 560 265 | 1.8 1.7 0.90 | 1,700 470 230 | 1.7 1.6 0.85 | 1,200 2,100 | 0.46 0.46 |
| 20F-V12 | AC/AC \(^{(U)}\) | 2,000 | 1,400 | 560 560 265 | 1.6 1.5 0.79 | 1,250 470 230 | 1.5 1.4 0.74 | 925 1,500 | 0.46 0.46 |
| 20F-V13 | AC/AC \(^{(B)}\) | 2,000 | 2,000 | 560 560 265 | 1.6 1.5 0.79 | 1,250 470 230 | 1.5 1.4 0.74 | 950 1,550 | 0.46 0.46 |
| 20F-V14 | POC/POC \(^{(U)}\) | 2,000 | 1,450 | 560 560 265 | 1.6 1.5 0.79 | 1,300 470 230 | 1.5 1.4 0.74 | 900 1,600 | 0.46 0.46 |
| 20F-V15 | POC/POC \(^{(B)}\) | 2,000 | 2,000 | 560 560 265 | 1.6 1.5 0.79 | 1,300 470 230 | 1.5 1.4 0.74 | 900 1,600 | 0.46 0.46 |

| Wet-use factor | 0.8 | 0.53 | 0.875 | 0.833 | 0.8 | 0.53 | 0.875 | 0.833 | 0.8 | 0.73 | see NDS |

\(^{(1)}\) The combination in this table is intended primarily for members stressed in bending due to loads applied perpendicular to the wide faces of the laminations. Allowable design values are tabulated, however, for loading both perpendicular and parallel to the wide faces of the laminations.

\(^{(2)}\) The tabulated allowable design values are for normal duration of loading. For other durations of loading, see the applicable building code. The tabulated allowable design values are for dry conditions of use. For wet conditions of use, multiply the tabulated values by the wet-use factors shown at the bottom of the table.

\(^{(3)}\) AC = Alaska cedar, DF = Douglas fir-Larch, POC = Port Orford cedar, and SP = Southern pine in accordance with the manufacturing standard.

\(^{(4)}\) The balanced (B) layup is intended primarily for multiple-span or cantilevered beam applications, but may be used in simple-span applications. The unbalanced (U) layup is intended primarily for simple-span applications, but may be used in multiple-span or cantilevered beam applications.

\(^{(5)}\) The values of \(F_t\) are based on members 5-1/8 inches in width by 12 inches in depth by 21 feet in length. For members with a larger volume, \(F_t\) shall be multiplied by a volume factor, \(C_v = \left(\frac{5.125}{b}\right)^{10} \left(\frac{5}{d}\right)^{10} \left(\frac{L}{10}\right)^{10}\), where \(b\) is the beam width (in.), \(d\) is the beam depth (in.), and \(L\) is the beam length between the points of zero moment (ft).

\(^{(6)}\) For non-prismatic members, members subject to impact or cyclic loading, or shear design of bending members at connections (NDS 3.4.3.3), the \(F_{sb}\) and \(F_{br}\) values shall be multiplied by a factor of 0.72. The tabulated \(F_{sb}\) values are for timbers with laminations made from a single piece of lumber across the width or multiple pieces that have been edge bonded. For timber manufactured from multiple piece laminations (across width) that are not edge bonded, value shall be multiplied by 0.4 for members with 5, 7, or 9 laminations or by 0.5 for all other members.

\(^{(7)}\) The tabulated \(E_{sb}\) values include true \(E\) (also known as “shear-free E”), apparent \(E\), and \(E\) for beam stability calculation (NDS 3.3.3.8). For calculating beam deflections, the tabulated \(E_{sb}\) values shall be used unless the shear deflection is determined in addition to bending deflection based on the tabulated \(E_{sa}\). The axial modulus of elasticity, \(E_{sa}\), and \(E_{sad}\), shall be equal to the tabulated \(E_{sb}\) true and \(E_{sb}\) app values.

\(^{(8)}\) The values of \(F_t\) are based on members 12 inches in depth. For depths less than 12 inches, \(F_t\) shall be permitted to be increased by multiplying by the flat use factor, \((1/12)^{10}\), where \(d\) is the beam depth in inches. When \(d\) is less than 3 inches, use the size adjustment factor for 3 inches.

\(^{(9)}\) The beam deflections are limited to 7-1/4 to 54 inches.

\(^{(10)}\) The specific gravity shall be permitted to be increased to 0.55 when the fastener is installed in the outer 25% (top and bottom) and the center 40% of the beam depth.
Table 2. Allowable Design Values for BOISE GLULAM Columns for Normal Duration of Load \(^{(1)}\)

<table>
<thead>
<tr>
<th>Combination Symbol</th>
<th>Species (^{(2)})</th>
<th>Grade</th>
<th>Modulus of Elasticity (^{(3)})</th>
<th>All Loading</th>
<th>Axially Loaded</th>
<th>Bending about Y-Y Axis</th>
<th>Bending about X-X Axis</th>
<th>Fasteners</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Species</td>
<td>Grade</td>
<td></td>
<td>Load Type</td>
<td></td>
<td>Tension Parallel to Grain</td>
<td>Compression Perpendicular to Grain</td>
<td>Compression Parallel to Grain</td>
</tr>
<tr>
<td></td>
<td>Species</td>
<td>Grade</td>
<td></td>
<td></td>
<td></td>
<td>E\text{mx}</td>
<td>E\text{my}</td>
<td>F\text{L} (psi)</td>
</tr>
<tr>
<td>2</td>
<td>DF</td>
<td>L2</td>
<td>1.7</td>
<td>1.6</td>
<td>0.85</td>
<td>0.85</td>
<td>0.85</td>
<td>1.250</td>
</tr>
<tr>
<td>3</td>
<td>DF</td>
<td>L2D</td>
<td>2.0</td>
<td>1.9</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.450</td>
</tr>
<tr>
<td>5</td>
<td>DF</td>
<td>L1</td>
<td>2.1</td>
<td>2.0</td>
<td>1.06</td>
<td>1.06</td>
<td>1.06</td>
<td>1.650</td>
</tr>
<tr>
<td>70</td>
<td>AC</td>
<td>L2</td>
<td>1.4</td>
<td>1.3</td>
<td>0.69</td>
<td>0.69</td>
<td>0.69</td>
<td>0.975</td>
</tr>
<tr>
<td>74</td>
<td>POC</td>
<td>L2</td>
<td>1.5</td>
<td>1.4</td>
<td>0.74</td>
<td>0.74</td>
<td>0.74</td>
<td>1.050</td>
</tr>
</tbody>
</table>

\(^{(1)}\) The tabulated allowable design values are for normal duration of loading. For other durations of loading, see applicable building code. The tabulated allowable design values are for dry conditions of use. For wet conditions of use, multiply the tabulated values by the factors shown at the bottom of the table.

\(^{(2)}\) AC = Alaska cedar, DF = Douglas fir-larch, and POC = Port Orford cedar.

\(^{(3)}\) The tabulated E values include shear-free (true) modulus of elasticity (E\text{mx}, E\text{my}, and E\text{xy}), apparent modulus of elasticity (E\text{mxapp}, and E\text{myapp}), and 5\% percentile modulus of elasticity (E\text{mxapp}, E\text{myapp}, and E\text{xyapp}). For column stability calculation (NDS 3.7.1), E\text{xyapp} shall be used. For calculating column deflections due to lateral loads (used as a beam), the tabulated E\text{xy} values shall be used unless the shear deflection is determined in addition to bending deflection based on the tabulated E\text{xyapp} of E\text{xyapp}.

\(^{(4)}\) The values of F\text{V} are based on members 12 inches in depth. For depths less than 12 inches, F\text{V} shall be permitted to be increased by multiplying by the size factor, \((12/d)^{0.18}\), where d is the beam depth in inches. When d is less than 3 inches, use the size adjustment factor for 3 inches.

\(^{(5)}\) For non-prismatic members, notched members, members subject to impact or cyclic loading, or shear design of bending members at connections (NDS 3.4.3.3), the tabulated F\text{V} values shall be multiplied by 0.72.

\(^{(6)}\) The tabulated F\text{V} values are for members 4 or more lams. The tabulated F\text{V} values shall be multiplied by a factor of 0.95 for 3 lams and 0.84 for 2 lams. For members with 5, 7, or 9 lams manufactured from multiple-piece lams with unbonded edge joints, the tabulated F\text{V} values shall be multiplied by a factor of 0.4. For all other members manufactured from multiple-piece lams with unbonded edge joints, the tabulated F\text{V} values shall be multiplied by a factor of 0.5. This adjustment shall be cumulative with the adjustment specified in Footnote 5.

\(^{(7)}\) The values of F\text{V} are based on members 5-1/8 inches in width by 12 inches in depth by 21 feet in length. For members with a larger volume, F\text{V} shall be multiplied by a volume factor, C\text{V} = \((5.125/b)^{0.10} (12/d)^{0.15} (21/L)^{0.10}\), where b is the beam width (in.), d is the beam depth (in.), and L is the beam length between the points of zero moment (ft).

\(^{(8)}\) The tabulated F\text{V} values are for members without special tension lams up to 15 inches in depth. If the member depth is greater than 15 inches without special tension lams, the tabulated F\text{V} values must be multiplied by a factor of 0.88. If special tension lams are used, the tabulated F\text{V} values are permitted to be increased by a factor of 1.18 regardless of the member depth provided that the increased F\text{V} value does not exceed 2,400 psi.
APA – The Engineered Wood Association is an approved national standards developer accredited by American National Standards Institute (ANSI). APA publishes ANSI standards and Voluntary Product Standards for wood structural panels and engineered wood products. APA is an accredited certification body under ISO/IEC 17065 by Standards Council of Canada (SCC), an accredited inspection agency under ISO/IEC 17020 by International Code Council (ICC) International Accreditation Service (IAS), and an accredited testing organization under ISO/IEC 17025 by IAS. APA is also an approved Product Certification Agency, Testing Laboratory, Quality Assurance Entity, and Validation Entity by the State of Florida, and an approved testing laboratory by City of Los Angeles.

APA – THE ENGINEERED WOOD ASSOCIATION
HEADQUARTERS
7011 So. 19th St. ▪ Tacoma, Washington 98466
Phone: (253) 565-6600 ▪ Fax: (253) 565-7265 ▪ Internet Address: www.apawood.org

PRODUCT SUPPORT HELP DESK
(253) 620-7400 ▪ E-mail Address: help@apawood.org

DISCLAIMER
APA Product Report® is a trademark of APA – The Engineered Wood Association, Tacoma, Washington. The information contained herein is based on the product evaluation in accordance with the references noted in this report. Neither APA, nor its members make any warranty, expressed or implied, or assume any legal liability or responsibility for the use, application of, and/or reference to opinions, findings, conclusions, or recommendations included in this report. Consult your local jurisdiction or design professional to assure compliance with code, construction, and performance requirements. Because APA has no control over quality of workmanship or the conditions under which engineered wood products are used, it cannot accept responsibility for product performance or designs as actually constructed.