Pacific Woodtech LVL and Pacific Woodtech 1.5E Rim Boards are structural composite lumber products complying with ASTM D5456 and additional performance requirements specified in the ICC-ES Acceptance Criteria for Structural Wood-based Products (AC47) and the Acceptance Criteria for Rim Board Products (AC124). Qualified adhesives, veneer species and veneer grades are as specified in the approved quality control manual. The veneers are laminated with the grain parallel to the length of the LVL member. Pacific Woodtech LVL is available in thicknesses from \(\frac{3}{4} \) inch (19.1 mm) to 7 inches (178 mm) and depths from \(1\frac{1}{4} \) inches (44.5 mm) to 48 inches (1219 mm). Products thicker than \(3\frac{1}{2} \) inches (89 mm) are fabricated by means of a secondary face-bonding process. Pacific Woodtech 1.5E Rim Boards are manufactured from 1.5E grade Pacific Woodtech LVL in thicknesses of \(1\frac{1}{4}, 1\frac{1}{2} \) and \(1\frac{3}{4} \) inches (32 mm, 38 mm and 44 mm), a maximum depth of 16 inches (406 mm), and a minimum length of 8 feet (2438 mm).

4.0 DESIGN AND INSTALLATION

4.1 Design:

4.1.1 General: The design provisions for structural composite lumber in the ANSI/AWC National Design Specification® (NDS) for Wood Construction, as referenced in the applicable code, are applicable to Pacific Woodtech LVL, unless otherwise noted in this report. Reference design values for Pacific Woodtech LVL are provided in Table 1.

4.1.2 Connections: Reference lateral and withdrawal design values for nailed or bolted connections in Pacific Woodtech LVL are as specified in the NDS for structural composite lumber having equivalent specific gravities as given in Table 3 of this report. For fasteners installed perpendicular to the wide face of the veneers, spacing, edge distances and end distances must be as required in the NDS for sawn lumber. Minimum required spacing, edge distances and end distances for fasteners installed into the narrow face of the LVL (faces showing the narrow edge of all veneers) are as given in Table 4. Bolted connections are not permitted in member edges.

Exception: Lag screw connections between Pacific Woodtech 1.5E Rim Boards and deck ledgers have an allowable lateral load of 350 pounds (1.56 kN) per lag screw, under the following conditions:

a. Lag screws must have a minimum nominal diameter of \(\frac{1}{2} \) inch (12.7 mm), and sufficient length so that the full diameter of the lag screw shank
penetrates through the rim board (the tapered tip must pass completely through the rim board).

b. Deck ledgers must consist of minimum 2-by-6 lumber having a minimum assigned specific gravity of 0.42.

c. Sheathing between the rim board and the deck ledger must consist of wood structural panels meeting PS-1 or PS-2 and be attached to the rim board in accordance with the applicable code.

d. One flat washer must be used between the deck ledger and the lag screw head.

e. Edge distances from the center of the lag screw to the edges of the rim board and deck ledger must be 2 inches (51 mm) or greater. End distances must be 4 inches (102 mm) or greater.

f. The lag screws must be installed, and adjustment factors must be applied as applicable, in accordance with the NDS.

g. Rim boards and deck ledgers must be checked for load-carrying capacity at connections in accordance with Section 10.1.2 of the NDS.

4.1.3 Rim Boards: Allowable loads for Pacific Woodtech 1.5E Rim Boards are given in Table 2. Toe-nailed connections of rim boards are not limited by the 150 plf (2189 N/m) lateral load capacity noted for Seismic Design Categories D, E, and F in Section 4.1.7 of the ANSI/AWC Special Design Provisions for Wind and Seismic (SDPWS).

4.1.4 Fireblocking: Pacific Woodtech LVL may be used as fireblocking in lieu of the materials listed in Section 718.2.1 of the 2015 and 2012 IBC, Section 717.2.1 of the 2009 IBC, and Section R302.11.1 of the 2015, 2012 and 2009 IRC, as applicable. LVL used as fireblocking must have a minimum thickness of 1 1/2 inches (38 mm), with the exception that 3/4-inch-thick (19 mm) LVL may be used, provided the joints are backed by a second layer of 3/4-inch-thick (19 mm) LVL.

4.2 Installation:

4.2.1 General: Installation of Pacific Woodtech LVL and Pacific Woodtech 1.5E Rim Boards must comply with this report and with the manufacturer's published installation instructions. The manufacturer's published installation instructions must be available at the jobsite at all times during installation.

4.2.2 Rim Boards: Pacific Woodtech 1.5E Rim Boards must be installed as a continuously supported structural element located at the joist elevation in an end bearing wall or parallel to the joist framing. It must be the full depth of the joist space and be used for any combination of the following: (1) transfer of vertical loads, from above to below, at the rim board location; (2) diaphragm attachment (e.g., sheathing to top edge of rim board); (3) transfer of in-plane lateral loads from the diaphragm to the wall plate below; (4) to provide lateral support to the joist (i.e., resistance against rotation) through attachment to the joist; (5) to provide closure for ends of joists; or (6) as an attachment base for siding and/or exterior deck ledgers.

5.0 CONDITIONS OF USE

The Pacific Woodtech® LVL and Pacific Woodtech® 1.5E Rim Boards described in this report comply with, or are suitable alternatives to what is specified in, those codes listed in Section 1.0 of this report, subject to the following conditions:
TABLE 1—PACIFIC WOODTECH® LVL REFERENCE DESIGN VALUES (psi)\(^1,2\)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Beam(^3)</th>
<th>Plank(^4)</th>
<th>Axial</th>
<th>E (^8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5E</td>
<td>2,250</td>
<td>2,250</td>
<td>1,500</td>
<td>1.950</td>
</tr>
<tr>
<td>1.8E</td>
<td>2,750</td>
<td>2,750</td>
<td>1,850</td>
<td>2.450</td>
</tr>
<tr>
<td>2.0E</td>
<td>3,100</td>
<td>3,100</td>
<td>2,100</td>
<td>2.750</td>
</tr>
<tr>
<td>2.2E</td>
<td>3,100</td>
<td>3,100</td>
<td>2,350</td>
<td>3.050</td>
</tr>
</tbody>
</table>

For SI: 1 psi = 6.895 kPa, 1 inch = 25.4 mm.

\(^1\)Reference design values are based on dry conditions of use, in which the in-service moisture content of the LVL is less than 16 percent. Applications where the moisture content will equal or exceed 16 percent are outside the scope of this report.

\(^2\)Reference design values must be adjusted, as applicable, in accordance with Section 8.3 of the NDS.

\(^3\)Beam values apply to members loaded and supported on faces showing the narrow edge of all veneers, typically the narrow faces of the member.

\(^4\)Plank values apply to members loaded and supported on faces showing the wide face of one veneer, typically the wide faces of the member.

\(^5\)Plank compression perpendicular to grain, \(F_c\), apply to a 4-foot member length. For member lengths greater than 4 feet, \(F_c\) must be multiplied by a factor of \((4/L)^{0.10}\), where \(L\) is the length of the member, in feet.

\(^6\)Tabulated values are the apparent modulus of elasticity. The reference modulus of elasticity for beam stability and column stability calculations, \(E_{min}\), must be calculated in accordance with Appendix D of the NDS. When calculating \(E_{min}\), the coefficient of variation of modulus of elasticity, COV\(_E\), may be taken as 0.10.

\(^7\)Reference tension design values parallel to grain, \(F_t\), apply to a 4-foot member length. For member lengths greater than 4 feet, \(F_t\) must be multiplied by a factor of \((4/L)^{0.10}\), where \(L\) is the length of the member, in feet.

\(^8\)The volume factor, \(CV\), which is applicable to reference bending design values, \(F_b\), in accordance with Section 8.3 of the NDS, must be calculated as follows: For beam orientation: \(CV = (12/d)^{0.20}\); For plank orientation: \(CV = (1.75/d)^{0.33}\) ≤ 1.00, where \(d\) is the member depth in inches.

TABLE 2—1\(\frac{1}{4}\), 1\(\frac{1}{2}\), 1\(\frac{3}{4}\)-INCH x 1.5E RIM BOARD ALLOWABLE LOADS\(^1,2,3,4\)

<table>
<thead>
<tr>
<th>Connection Type – Orientation</th>
<th>Lateral Load Capacity(^5)</th>
<th>Vertical Load Capacity (^6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deck Ledger Connection with (\frac{1}{2})-inch-Diameter Lag Screw - Lateral Load Capacity(^5)</td>
<td>200 plf</td>
<td>2,900 plf</td>
</tr>
<tr>
<td></td>
<td>350 lb(^{60})</td>
<td></td>
</tr>
</tbody>
</table>

For SI: 1 plf = 14.59 N/m, 1 lb = 4.448 N.

\(^1\)The design loads given in this table are for rim boards installed in accordance with Section 4.2.2.

\(^2\)Tabulated design values are based on dry conditions of use, in which the in-service moisture content of the LVL is less than 16 percent. Applications where the moisture content will equal or exceed 16 percent are outside the scope of this report.

\(^3\)Tabulated design values may be adjusted for duration of load in accordance with Section 2.3.2 of the NDS, except where otherwise noted.

\(^4\)Other design values are as provided for 1.5E grade Pacific Woodtech LVL in Table 1.

\(^5\)The tabulated lateral load capacity applies to a ten-minute wind or earthquake load duration (\(C_0 = 1.60\)). No further increase is permitted for duration of load.

\(^6\)Lag screw connections between rim boards and deck ledgers have an allowable lateral load of 350 pounds per lag screw, provided the conditions in the exception to Section 4.1.2 are met.

TABLE 3—EQUIVALENT SPECIFIC GRAVITY FOR CONNECTION DESIGN\(^1,2\)

<table>
<thead>
<tr>
<th>Connection Type – Load Direction</th>
<th>Face(^3)</th>
<th>Edge(^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nail – Withdrawal</td>
<td>0.50</td>
<td>0.47</td>
</tr>
<tr>
<td>Nail – Lateral</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Bolt – Lateral</td>
<td>0.50</td>
<td>N.A.</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

\(^1\)Reference lateral and withdrawal design values for bolted and nailed connections in Pacific Woodtech LVL are as specified in the NDS for structural composite lumber having equivalent specific gravities as indicated in the table above.

\(^2\)Connections in which fasteners are installed into the end grain of the LVL are outside the scope of this report.

\(^3\)Values given under the heading ‘Face’ apply to connections in which the fastener axis is installed perpendicular to the faces showing the wide face of one veneer.

\(^4\)Values given under the heading ‘Edge’ apply to connections in which the fastener axis is installed perpendicular to the faces showing the narrow edge of all veneers.

TABLE 4—MINIMUM FASTENER SPACING\(^1,2\)

<table>
<thead>
<tr>
<th>LVL DIMENSIONS</th>
<th>FASTENER</th>
<th>MAXIMUM FASTENER PENETRATION INTO LVL(^3) (inches)</th>
<th>MINIMUM FASTENER SPACING (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum 1(\frac{1}{4}) inches thick and 3(\frac{1}{2}) inches deep</td>
<td>8d Nail</td>
<td>2(\frac{1}{8})</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>10d Nail</td>
<td>2(\frac{3}{16})</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>12d Nail</td>
<td>2(\frac{1}{16})</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>16d Nail</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

\(^1\)Minimum fastener spacing values apply to a single row of nails driven into the edge of LVL.

\(^2\)Minimum edge and end distances for nails driven into the edge of the LVL (i.e., into the faces showing the narrow edge of all veneers) have not been evaluated. Edge and end distances must be sufficient to prevent splitting of the LVL.

\(^3\)Penetration length includes nail tip.
DISCLAIMER

APA Product Report® is a trademark of APA – The Engineered Wood Association, Tacoma, Washington. ICC-ES Evaluation Report is a trademark of ICC Evaluation Service, LLC (ICC-ES). The information contained herein is based on the product evaluation in accordance with the references noted in this report. Neither ICC-ES, nor APA or its members make any warranty, expressed or implied, or assume any legal liability or responsibility for the use, application of, and/or reference to opinions, findings, conclusions, or recommendations included in this report. The joint ICC-ES/APA Evaluation Reports are not to be construed as representing aesthetics or any other attributes not specifically addressed, nor are they to be construed as an endorsement of the subject of the report or a recommendation for its use. Consult the local jurisdiction or design professional to assure compliance with code, construction, and performance requirements. Because neither APA, nor ICC-ES, has any control over quality of workmanship or the conditions under which engineered wood products are used, it cannot accept responsibility for product performance or designs as actually constructed.
DIVISION: 06 00 00—WOOD, PLASTICS AND COMPOSITES
Section: 06 17 13—Laminated Veneer Lumber

REPORT HOLDER:

PACIFIC WOODTECH CORPORATION

EVALUATION SUBJECT:

PACIFIC WOODTECH® LAMINATED VENEER LUMBER (LVL), AND PACIFIC WOODTECH® 1.5E RIM BOARDS

1.0 REPORT PURPOSE AND SCOPE

Purpose:
The purpose of this evaluation report supplement is to indicate that Pacific Woodtech® Laminated Veneer Lumber (LVL) and Pacific Woodtech® 1.5E Rim Boards, recognized in ICC-ES master evaluation report ESR-2909, have also been evaluated for compliance with the codes noted below.

Applicable code editions:
- 2017 Florida Building Code—Building
- 2017 Florida Building Code—Residential

2.0 CONCLUSIONS

The Pacific Woodtech® Laminated Veneer Lumber (LVL) and Pacific Woodtech® 1.5E Rim Boards, described in Sections 2.0 through 7.0 of the master evaluation report ESR-2909, comply with the Florida Building Code—Building and the Florida Building Code—Residential, provided the design and installation are in accordance with the 2015 International Building Code® provisions noted in the master report.

Use of the Pacific Woodtech® Laminated Veneer Lumber (LVL) and Pacific Woodtech® 1.5E Rim Boards for compliance with the High-Velocity Hurricane Zone provisions of the Florida Building Code—Building and the Florida Building Code—Residential has not been evaluated, and is outside the scope of this supplemental report.

For products falling under Florida Rule 9N-3, verification that the report holder’s quality assurance program is audited by a quality assurance entity approved by the Florida Building Commission for the type of inspections being conducted is the responsibility of an approved validation entity (or the code official when the report holder does not possess an approval by the Commission).

This supplement expires concurrently with the master report, reissued September 2019.