1.0 EVALUATION SCOPE

Compliance with the following codes:


For evaluation for compliance with codes adopted by the Los Angeles Department of Building and Safety (LADBS), see ESR-2909 LABC and LARC Supplement.

Properties evaluated:

- Structural
- Fireblocking

2.0 USES

Pacific Woodtech laminated veneer lumber (LVL) and Pacific Woodtech Treated LVL are used in structural applications such as beams, headers, joists, rafters, columns, and truss chords. Pacific Woodtech Rim Boards are used in rim board applications as described in this report.

3.0 DESCRIPTION

Pacific Woodtech LVL and Pacific Woodtech Rim Boards are structural composite lumber products complying with ASTM D5456 and additional performance requirements specified in the ICC-ES Acceptance Criteria for Structural Wood-based Products (AC47) and the Acceptance Criteria for Rim Board Products (AC124). Qualified adhesives, veneer species and veneer grades are as specified in the approved quality control manual. The veneers are laminated with the grain parallel to the length of the LVL member. Pacific Woodtech LVL is available in thicknesses from 9/16 inch (19.1 mm) to 7 inches (178 mm) and depths from 1 1/4 inches (44.5 mm) to 48 inches (1219 mm). Products thicker than 3 1/2 inches (89 mm) are fabricated by means of a secondary face-bonding process. Pacific Woodtech Rim Boards are manufactured from Pacific Woodtech LVL in thicknesses of 1 1/4, 1 1/2 and 1 3/4 inches (32 mm, 38 mm and 44 mm), a maximum depth of 24 inches (610 mm), and a minimum length of 8 feet (2438 mm).

Pacific Woodtech Treated LVL is fabricated with Propiconazole Tebuconazole Imidacloprid (PTI) as part of the in-glueline treatment during the LVL manufacturing process for fungal decay and resistance to wood.
destroying insects, including Formosan termites, to a retention level equivalent to that specified in ICC-ES Evaluation Report ESR-3834 for the Use Categories UC1 through UC4A. Pacific Woodtech Treated LVL shall be limited to the above ground applications including, but not limited to, structural members that are hard to maintain, repair or replace and are critical to the performance and safety of the structure system.

4.0 DESIGN AND INSTALLATION

4.1 Design:

4.1.1 General: The design provisions for structural composite lumber in the ANSI/AWC National Design Specification® (NDS) for Wood Construction, as referenced in the applicable code, are applicable to Pacific Woodtech LVL, unless otherwise noted in this report. Reference design values for Pacific Woodtech LVL and Pacific Woodtech Treated LVL are provided in Tables 1A and 1B.

4.1.2 Connections: Reference lateral and withdrawal design values for nailed or bolted connections in Pacific Woodtech LVL and Pacific Woodtech Treated LVL are as specified in the NDS for structural composite lumber having equivalent specific gravities as given in Table 3 of this report. For fasteners installed perpendicular to the wide face of the veneers, spacing, edge distances and end distances must be as required in the NDS for sawn lumber. Minimum required spacing, edge distances and end distances for fasteners installed into the narrow face of the LVL (faces showing the narrow edge of all veneers) are as given in Table 4. Bolted connections are not allowed in member edges.

Connections, other than the nailed and bolted connections described herein, are outside the scope of this report.

Exception: Lag screw connections between Pacific Woodtech Rim Boards and deck ledgers have an allowable lateral load of 350 pounds (1.56 kN) per lag screw, under the following conditions:

a. Lag screws must have a minimum nominal diameter of 1/2 inch (12.7 mm), and sufficient length so that the full diameter of the lag screw shank penetrates through the rim board (the tapered tip must pass completely through the rim board).

b. Deck ledgers must consist of minimum 2-by-8 lumber having a minimum assigned specific gravity of 0.42.

c. Sheathing between the rim board and the deck ledger must consist of wood structural panels meeting PS-1 or PS-2 and be attached to the rim board in accordance with the applicable code.

d. One flat washer must be used between the deck ledger and the lag screw head.

e. Edge distances from the center of the lag screw to the edges of the rim board and deck ledger must be 2 inches (51 mm) or greater. End distances must be 4 inches (102 mm) or greater.

f. The lag screws must be installed, and adjustment factors must be applied as applicable, in accordance with the NDS.

g. Rim boards and deck ledgers must be checked for load-carrying capacity at connections in accordance with Section 11.1.2 of the NDS.

4.1.3 Rim Boards: Allowable loads for Pacific Woodtech Rim Boards are given in Table 2. Toe-nailed connections of rim boards are not limited by the 150 plf (2189 N/m) lateral load capacity noted for Seismic Design Categories D, E, and F in Section 4.1.7 of the ANSI/AWC Special Design Provisions for Wind and Seismic (SDPWS).

4.1.4 Fireblocking: Pacific Woodtech LVL may be used as fireblocking in lieu of the materials listed in Section 718.2.1 of the 2021, 2018, 2015 and 2012 IBC, Section 717.2.1 of the 2009 IBC, and Section R302.11.1 of the IRC, as applicable. LVL used as fireblocking must have a minimum thickness of 11/2 inches (38 mm), with the exception that 3/4-inch-thick (19 mm) LVL may be used, provided the joints are backed by a second layer of 3/4-inch-thick (19 mm) LVL.

4.2 Installation:

4.2.1 General: Installation of Pacific Woodtech LVL, Pacific Woodtech Treated LVL, and Pacific Woodtech® Rim Boards must comply with this report and with the manufacturer’s published installation instructions. The manufacturer’s published installation instructions must be available at the jobsite at all times during installation.

4.2.2 Rim Boards: Pacific Woodtech Rim Boards must be installed as a continuously supported structural element located at the joist elevation in an end bearing wall or parallel to the joist framing. It must be the full depth of the joist space and be used for any combination of the following: (1) transfer of vertical loads, from
above to below, at the rim board location; (2) diaphragm attachment (e.g., sheathing to top edge of rim board); (3) transfer of in-plane lateral loads from the diaphragm to the wall plate below; (4) to provide lateral support to the joist (i.e., resistance against rotation) through attachment to the joist; (5) to provide closure for ends of joists; or (6) as an attachment base for siding and/or exterior deck ledgers.

5.0 CONDITIONS OF USE

The Pacific WoodtechLVL, Pacific Woodtech Treated LVL and Pacific Woodtech Rim Boards described in this report comply with, or are suitable alternatives to what is specified in, those codes listed in Section 1.0 of this report, subject to the following conditions:

5.1 Design and installation must comply with this report, the manufacturer's published installation instructions, and the applicable code. In the event of a conflict between this report and the manufacturer's published installation instructions, this report governs.

5.2 Design calculations and/or drawings, demonstrating compliance with this report, must be provided to the code official upon request. These documents must be sealed by a registered design professional where required by the statutes of the jurisdiction in which the project is to be constructed.

5.3 Plank compression perpendicular to grain, $F_{c\perp}$, values in Table 1 are allowed to be adjusted by the NDS specified bearing area factor, $C_b$.

5.4 With the exception for Pacific Woodtech Treated LVL, applications in unprotected, wet service conditions, where the moisture content of the LVL will reach 16 percent or greater, are beyond the scope of this report.

5.5 Pacific Woodtech Treated LVL may be used in exterior construction above ground applications (UC3B), including components that are difficult to maintain, repair, or replace and are critical to the performance and safety of the building structure.

5.6 Pacific Woodtech LVL products are produced at the Pacific Woodtech Corporation manufacturing plant located in Burlington, Washington, under a quality-control program with inspections by ICC-ES and APA—The Engineered Wood Association (AA-649).

6.0 EVIDENCE SUBMITTED

6.1 Data in accordance with the ICC-ES Acceptance Criteria for Structural Wood-based Products (AC47), dated June 2017 (Editorially revised February 2021).

6.2 Data in accordance with the ICC-ES Acceptance Criteria for Rim Board Products (AC124), dated June 2019 (Editorially revised February 2021).

7.0 IDENTIFICATION

7.1 Pacific Woodtech LVL and Pacific Woodtech Treated LVL are identified by a stamp noting the manufacturer's name (Pacific Woodtech), product trade name, grade, production date, evaluation report number (ESR-2909), qualified inspection agency name or logo (APA), and manufacturer's APA mill number (1047).

7.2 Pacific Woodtech Rim Boards are identified by a stamp noting the manufacturer's name (Pacific Woodtech), product trade name, product name or registered trademark, grade, thickness, production date, evaluation report number (ESR-2909), name of the inspection agency (APA—The Engineered Wood Association) and manufacturer’s APA mill number (1047).

7.3 The report holder’s contact information is the following:

PACIFIC WOODTECH CORPORATION
1850 PARK LANE
BURLINGTON, WASHINGTON 98233
(360) 707-2200
www.pacificwoodtech.com
### TABLE 1A—PACIFIC WOODTECH® LVL AND TREATED LVL REFERENCE DESIGN VALUES (psi)\(^{1,2}\)

<table>
<thead>
<tr>
<th>Grade</th>
<th>MOE (10^6 psi)(^3)</th>
<th>Grade</th>
<th>MOE (10^6 psi)(^3)</th>
<th>Beam(^4)</th>
<th>Plank(^4)</th>
<th>Axial</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(F_b) (psi)(^7)</td>
<td>(F_c) (psi)</td>
<td>(F_{\text{plank}}) (psi)</td>
<td>(F_v) (psi)</td>
<td>(F_{\text{plank}}) (psi)</td>
<td>(F_v) (psi)</td>
</tr>
<tr>
<td>1.6E</td>
<td>1.6</td>
<td>1.5E</td>
<td>1.5</td>
<td>2,250</td>
<td>230</td>
<td>750</td>
</tr>
<tr>
<td>1.9E</td>
<td>1.9</td>
<td>1.8E</td>
<td>1.8</td>
<td>2,750</td>
<td>285</td>
<td>850</td>
</tr>
<tr>
<td>PWT Treated</td>
<td>2.0</td>
<td>PWT Treated</td>
<td>1.9</td>
<td>2,800</td>
<td>285</td>
<td>850</td>
</tr>
<tr>
<td>2.0E</td>
<td>2.0</td>
<td>1.9E</td>
<td>1.9</td>
<td>2,900</td>
<td>285</td>
<td>750</td>
</tr>
<tr>
<td>2.1E</td>
<td>2.1</td>
<td>2.0E</td>
<td>2.0</td>
<td>2,900</td>
<td>285</td>
<td>750</td>
</tr>
<tr>
<td>2.1E</td>
<td>2.1</td>
<td>2.0E</td>
<td>2.0</td>
<td>3,100</td>
<td>285</td>
<td>850</td>
</tr>
<tr>
<td>2.3E</td>
<td>2.3</td>
<td>2.2E</td>
<td>2.2</td>
<td>3,100</td>
<td>285</td>
<td>850</td>
</tr>
</tbody>
</table>

For SI: 1 psi = 6.895 kPa, 1 inch = 25.4 mm.

\(^{1}\)Reference design values are based on dry conditions of use, in which the environmental conditions (temperature and relative humidity) will result in an average equilibrium moisture content (EMC) of sawn lumber of less than 16 percent. Applications where the EMC will equal or exceed 16 percent are outside the scope of this report, except for PWT Treated LVL. Design values for PWT Treated LVL when used in EMC of 16% or greater are provided in Table 1B.

\(^{2}\)Reference design values must be adjusted, as applicable, in accordance with Section 8.3 of the NDS.

\(^{3}\)Beam values apply to members loaded and supported on faces showing the narrow edge of all veneers, typically the narrow faces of the member.

\(^{4}\)Plank values apply to members loaded and supported on faces showing the wide face of one veneer, typically the wide faces of the member.

\(^{5}\)Plank compression perpendicular to grain, \(F_{\text{plank}}\), values are allowed to be adjusted by the NDS specified bearing area factor, \(C_{\text{b}}\).

\(^{6}\)The volume factor, \(C_v\), which is applicable to reference bending design values, \(F_v\), in accordance with Section 8.3 of the NDS, must be calculated as follows: For beam orientation: \(C_v = (12/d)^{0.20} \leq 1.47\); For plank orientation: \(C_v = (1.75/d)^{0.33} \leq 1.00\), where \(d\) is the member depth in inches.

\(^{7}\)Deformation up to 0.125 inch could occur at the tabulated compressive stress perpendicular to grain in wet-use conditions.

---

### TABLE 1B—PACIFIC WOODTECH® TREATED LVL REFERENCE DESIGN VALUES FOR WET-USE\(^{1,2}\)

<table>
<thead>
<tr>
<th>Grade</th>
<th>MOE (10^6 psi)(^3)</th>
<th>Grade</th>
<th>MOE (10^6 psi)(^3)</th>
<th>Beam(^4)</th>
<th>Plank(^4)</th>
<th>Axial</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWT Treated</td>
<td>1.4</td>
<td>PWT Treated</td>
<td>1.3</td>
<td>1,680</td>
<td>160</td>
<td>465(^{10})</td>
</tr>
</tbody>
</table>

For SI: 1 psi = 6.895 kPa, 1 inch = 25.4 mm.

\(^{1}\)Reference design values are based on wet conditions of use, in which the environmental conditions (temperature and relative humidity) will result in an average equilibrium moisture content (EMC) of sawn lumber of 16% or greater.

\(^{2}\)Reference design values must be adjusted, as applicable, in accordance with Section 8.3 of the NDS, except for the wet service factor (\(C_{\text{w}}\)).

\(^{3}\)See Footnotes to Table 1A.

\(^{4}\)Deformation up to 0.125 inch could occur at the tabulated compressive stress perpendicular to grain in wet-use conditions.
### TABLE 2 — 1\(\frac{1}{4}\), 1\(\frac{1}{2}\), 1\(\frac{3}{4}\)-INCH RIM BOARD ALLOWABLE LOADS\(^1, 2, 3, 4\)

<table>
<thead>
<tr>
<th>True E ((10^6 \text{ psi}))</th>
<th>Apparent E ((10^6 \text{ psi}))</th>
<th>Minimum Thickness ((\text{in.}))</th>
<th>Depth ((\text{in.}))</th>
<th>Vertical Load Capacity</th>
<th>Lateral Load Capacity(^2)</th>
<th>Deck Ledger Connection(^2)</th>
<th>Deck Ledger Connection ((\frac{1}{2})&quot; dia. bolt with air gap)</th>
<th>Deck Ledger Connection ((\frac{1}{2})&quot; lag screw)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6</td>
<td>1.5</td>
<td>1(\frac{1}{4})</td>
<td>1(\frac{1}{4})</td>
<td>11-(\frac{7}{8})</td>
<td>4,250</td>
<td>3,760</td>
<td>200</td>
<td>550</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1(\frac{1}{2})</td>
<td>1(\frac{1}{2})</td>
<td>11-(\frac{7}{8})</td>
<td>6,480</td>
<td>4,500</td>
<td>250</td>
<td>550</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1(\frac{3}{4})</td>
<td>1(\frac{3}{4})</td>
<td>11-(\frac{7}{8})</td>
<td>7,560</td>
<td>5,200</td>
<td>250</td>
<td>675</td>
</tr>
<tr>
<td>1.6</td>
<td>1.5</td>
<td>1(\frac{1}{4})</td>
<td>1(\frac{1}{4})</td>
<td>14</td>
<td>3,550</td>
<td>3,550</td>
<td>200</td>
<td>550</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1(\frac{1}{2})</td>
<td>1(\frac{1}{2})</td>
<td>14</td>
<td>5,600</td>
<td>4,500</td>
<td>250</td>
<td>550</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1(\frac{3}{4})</td>
<td>1(\frac{3}{4})</td>
<td>14</td>
<td>6,900</td>
<td>5,200</td>
<td>250</td>
<td>675</td>
</tr>
<tr>
<td>1.6</td>
<td>1.5</td>
<td>1(\frac{1}{4})</td>
<td>1(\frac{1}{4})</td>
<td>16</td>
<td>2,900</td>
<td>2,900</td>
<td>200</td>
<td>550</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1(\frac{1}{2})</td>
<td>1(\frac{1}{2})</td>
<td>16</td>
<td>4,800</td>
<td>4,500</td>
<td>250</td>
<td>550</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1(\frac{3}{4})</td>
<td>1(\frac{3}{4})</td>
<td>16</td>
<td>6,200</td>
<td>5,200</td>
<td>250</td>
<td>675</td>
</tr>
<tr>
<td>1.6</td>
<td>1.5</td>
<td>1(\frac{1}{4})</td>
<td>1(\frac{1}{4})</td>
<td>18</td>
<td>3,200</td>
<td>2,700</td>
<td>200</td>
<td>550</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1(\frac{1}{2})</td>
<td>1(\frac{1}{2})</td>
<td>18</td>
<td>3,900</td>
<td>2,700</td>
<td>250</td>
<td>550</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1(\frac{3}{4})</td>
<td>1(\frac{3}{4})</td>
<td>18</td>
<td>5,500</td>
<td>4,200</td>
<td>250</td>
<td>675</td>
</tr>
<tr>
<td>1.6</td>
<td>1.5</td>
<td>1(\frac{1}{4})</td>
<td>1(\frac{1}{4})</td>
<td>20</td>
<td>2,250</td>
<td>2,250</td>
<td>200</td>
<td>550</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1(\frac{1}{2})</td>
<td>1(\frac{1}{2})</td>
<td>20</td>
<td>2,900</td>
<td>2,900</td>
<td>250</td>
<td>550</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1(\frac{3}{4})</td>
<td>1(\frac{3}{4})</td>
<td>20</td>
<td>4,800</td>
<td>4,200</td>
<td>250</td>
<td>675</td>
</tr>
<tr>
<td>1.6</td>
<td>1.5</td>
<td>1(\frac{1}{4})</td>
<td>1(\frac{1}{4})</td>
<td>24</td>
<td>3,500</td>
<td>3,500</td>
<td>200</td>
<td>550</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1(\frac{1}{2})</td>
<td>1(\frac{1}{2})</td>
<td>24</td>
<td>4,800</td>
<td>4,200</td>
<td>250</td>
<td>675</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1(\frac{3}{4})</td>
<td>1(\frac{3}{4})</td>
<td>24</td>
<td>6,480</td>
<td>4,500</td>
<td>250</td>
<td>675</td>
</tr>
</tbody>
</table>

For SI: 1 plf = 14.59 N/m, 1 lb = 4.448 N.

1 The design loads given in this table are for rim boards installed in accordance with Section 4.2.2.
2 Tabulated design values are based on dry conditions of use, in which the environmental conditions (temperature and relative humidity) will result in an average equilibrium moisture content (EMC) of sawn lumber of less than 16%. Applications where the EMC will equal or exceed 16% are outside the scope of this report.
3 All design values are applicable to the normal load duration (10 years) for wood products, except for the lateral load capacity, which is based on the short-term load duration (10 minutes). Design values shall be adjusted for other load durations in accordance with 2.3.2 of the NDS except the uniform vertical load and concentrated vertical load are not allowed to be increased for any load durations shorter than the normal load duration (10 years).
4 Other design values are as provided for 1.6E grade Pacific Woodtech LVL in Table 1.
5 Lag screw connections between rim boards and deck ledgers have an allowable lateral load of 350 pounds per lag screw, provided the conditions in the exception to Section 4.1.2 are met.

### TABLE 3 — EQUIVALENT SPECIFIC GRAVITY FOR CONNECTION DESIGN\(^1, 2\)

<table>
<thead>
<tr>
<th>Connection Type – Load Direction</th>
<th>Fastener Orientation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nail – Withdrawal</td>
<td>0.50</td>
</tr>
<tr>
<td>Nail – Lateral</td>
<td>0.50</td>
</tr>
<tr>
<td>Bolt – Lateral</td>
<td>0.50</td>
</tr>
</tbody>
</table>

1 Reference lateral and withdrawal design values for bolted and nailed connections in Pacific Woodtech LVL are as specified in the NDS for structural composite lumber having equivalent specific gravities as indicated in the table above. When used in wet conditions, the fastener design values shall be adjusted by the wet service factor in accordance with the NDS.
2 Connections in which fasteners are installed into the end grain of the LVL are outside the scope of this report.
3 Values given under the heading ‘Face’ apply to connections in which the fastener axis is installed perpendicular to the faces showing the wide face of one veneer.
4 Values given under the heading ‘Edge’ apply to connections in which the fastener axis is installed perpendicular to the faces showing the narrow edge of all veneers.
### TABLE 4—MINIMUM NAIL SPACING AND END DISTANCE

<table>
<thead>
<tr>
<th>Nominal LVL Thickness</th>
<th>Orientation</th>
<th>Nail Size(^2)</th>
<th>Nail Diameter (in.)</th>
<th>Nail Length (in.)</th>
<th>Minimum End Distance (in.)</th>
<th>Minimum Nail Spacing(^2) (in.)</th>
<th>Maximum Nail Penetration(^3) (in.)</th>
<th>Single Row</th>
<th>Double Row</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 1-1/2 in.</td>
<td>Edge</td>
<td>8d &amp; smaller</td>
<td>0.131</td>
<td>2.5</td>
<td>2-1/2</td>
<td>3</td>
<td>NA</td>
<td>2.25</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10d &amp; 12d</td>
<td>0.148</td>
<td>3.25</td>
<td>2-1/2</td>
<td>4</td>
<td>2.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>16d</td>
<td>0.162</td>
<td>3.5</td>
<td>3-1/2</td>
<td>5</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Face(^4)</td>
<td>12d &amp; smaller</td>
<td>0.148</td>
<td>3.25</td>
<td>1-1/2</td>
<td>3</td>
<td>3</td>
<td>LVL Thickness</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>16d</td>
<td>0.162</td>
<td>3.5</td>
<td>1-1/2</td>
<td>5</td>
<td>5</td>
<td>LVL Thickness</td>
<td></td>
</tr>
<tr>
<td>1-1/2 in. and greater</td>
<td>Edge</td>
<td>8d &amp; smaller</td>
<td>0.131</td>
<td>2.5</td>
<td>2-1/2</td>
<td>3</td>
<td>4</td>
<td>2.25</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10d &amp; 12d</td>
<td>0.148</td>
<td>3.25</td>
<td>3-1/2</td>
<td>4</td>
<td>5</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>16d</td>
<td>0.162</td>
<td>3.5</td>
<td>3-1/2</td>
<td>5</td>
<td>6(^6)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Face(^4)</td>
<td>12d &amp; smaller</td>
<td>0.148</td>
<td>3.25</td>
<td>1-1/2</td>
<td>3</td>
<td>3</td>
<td>LVL Thickness</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>16d</td>
<td>0.162</td>
<td>3.5</td>
<td>1-1/2</td>
<td>5</td>
<td>5</td>
<td>LVL Thickness</td>
<td></td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

\(^1\)Edge distance shall be sufficient to prevent splitting.

\(^2\)Nail sizes and closest on-center spacing not specifically described in this table are outside the scope of this report.

\(^3\)Penetration length includes nail tip.

\(^4\)Tabulated closest on-center spacing for face orientation is applicable to nails that are installed in rows parallel to the grain (length) of the LVL. For nails installed in rows perpendicular to the direction of grain (width/depth) of the LVL, the closest on-center spacing for face orientation shall be sufficient to prevent splitting of the LVL.

\(^5\)Minimum end distance is allowed to be reduced to 2-1/2 in. for single row nailing.

\(^6\)Minimum nail spacing may be reduced to 5 in. when LVL is 1-1/4 in. or thicker.
1.0 REPORT PURPOSE AND SCOPE

Purpose:
The purpose of this evaluation report supplement is to indicate that Pacific Woodtech® laminated veneer lumber (LVL), Pacific Woodtech® Treated LVL, and Pacific Woodtech® Rim Boards, described in ICC-ES evaluation report ESR-2909, have also been evaluated for compliance with the codes noted below as adopted by the Los Angeles Department of Building and Safety (LADBS).

Applicable code editions:
- 2020 City of Los Angeles Building Code (LABC)
- 2020 City of Los Angeles Residential Code (LARC)

2.0 CONCLUSIONS

The Pacific Woodtech® LVL, Pacific Woodtech® Treated LVL, and Pacific Woodtech® Rim Boards described in Sections 2.0 through 7.0 of the evaluation report ESR-2909, comply with the LABC Chapter 23, and the LARC, and are subjected to the conditions of use described in this supplement.

3.0 CONDITIONS OF USE

The Pacific Woodtech® LVL, Pacific Woodtech® Treated LVL, and Pacific Woodtech® Rim Boards described in this evaluation report supplement must comply with all of the following conditions:

- All applicable sections in the evaluation report ESR-2909.
- The design, installation, conditions of use and identification are in accordance with the 2018 International Building Code® (IBC) provisions noted in the evaluation report ESR-2909.
- The design, installation and inspection are in accordance with additional requirements of LABC Chapters 16 and 17, as applicable.

This supplement expires concurrently with the evaluation report, reissued September 2023.
DIVISION: 06 00 00—WOOD, PLASTICS AND COMPOSITES
Section: 06 17 13—Laminated Veneer Lumber

REPORT HOLDER:

PACIFIC WOODTECH CORPORATION

EVALUATION SUBJECT:

PACIFIC WOODTECH® LAMINATED VENEER LUMBER (LVL), PACIFIC WOODTECH® TREATED LVL AND PACIFIC WOODTECH® RIM BOARDS

1.0 REPORT PURPOSE AND SCOPE

Purpose:
The purpose of this evaluation report supplement is to indicate that Pacific Woodtech® Laminated Veneer Lumber (LVL) and Pacific Woodtech® Rim Boards, described in ICC-ES evaluation report ESR-2909, have also been evaluated for compliance with the code(s) noted below.

Applicable code editions:
- 2019 California Building Code® (CBC)
- 2019 California Residential Code® (CRC)

2.0 CONCLUSIONS

2.1 CBC:
The Pacific Woodtech® Laminated Veneer Lumber (LVL) and Pacific Woodtech® Rim Boards, described in Sections 2.0 through 7.0 of the evaluation report ESR-2909, comply with CBC Chapter 23, provided the design and installation are in accordance with the 2018 International Building Code® (IBC) provisions noted in the evaluation report, ESR-2909, and the additional requirements of CBC Chapters 16 and 17, as applicable.

2.1.1 OSHPD:
The applicable OSHPD Sections and Chapters of the CBC are beyond the scope of this supplement.

2.1.2 DSA:
The applicable DSA Sections and Chapters of the CBC are beyond the scope of this supplement.

2.2 CRC:
The Pacific Woodtech® Laminated Veneer Lumber (LVL) and Pacific Woodtech® Rim Boards, described in Sections 2.0 through 7.0 of the evaluation report ESR-2909, comply with CRC Chapters 5 and 8, provided the design and installation are in accordance with the 2018 International Residential Code® (IRC) provisions noted in the evaluation report ESR-2909.

This supplement expires concurrently with the evaluation report, reissued September 2023.
DIVISION: 06 00 00—WOOD, PLASTICS AND COMPOSITES
Section: 06 17 13—Laminated Veneer Lumber

REPORT HOLDER:
PACIFIC WOODTECH CORPORATION

EVALUATION SUBJECT:
PACIFIC WOODTECH® LAMINATED VENEER LUMBER (LVL), PACIFIC WOODTECH® TREATED LVL AND PACIFIC WOODTECH® RIM BOARDS

1.0 REPORT PURPOSE AND SCOPE

Purpose:
The purpose of this evaluation report supplement is to indicate that Pacific Woodtech® laminated veneer lumber (LVL), Pacific Woodtech® Treated LVL, and Pacific Woodtech® Rim Boards, described in ICC-ES evaluation report ESR-2909, have also been evaluated for compliance with the codes noted below.

Applicable code editions:
- 2020 Florida Building Code—Building
- 2020 Florida Building Code—Residential

2.0 CONCLUSIONS

The Pacific Woodtech® LVL, Pacific Woodtech® Treated LVL, and Pacific Woodtech® Rim Boards, described in Sections 2.0 through 7.0 of the evaluation report ESR-2909, comply with the Florida Building Code—Building and the Florida Building Code—Residential, provided the design requirements are determined in accordance with the Florida Building Code—Building or the Florida Building Code—Residential, as applicable. The installation requirements noted in evaluation report ESR-2909 for the 2018 International Building Code® meet the requirements of the Florida Building Code—Building or the Florida Building Code—Residential, as applicable.

Use of the Pacific Woodtech® LVL, Pacific Woodtech® Treated LVL, and Pacific Woodtech® Rim Boards for compliance with the High-Velocity Hurricane Zone provisions of the Florida Building Code—Building and the Florida Building Code—Residential has not been evaluated, and is outside the scope of this evaluation report supplement.

For products falling under Florida Rule 61G20-3, verification that the report holder’s quality assurance program is audited by a quality assurance entity approved by the Florida Building Commission for the type of inspections being conducted is the responsibility of an approved validation entity (or the code official when the report holder does not possess an approval by the Commission).

This supplement expires concurrently with the evaluation report, reissued September 2023.