

Volatile Organic Compound Emissions from Engineered Wood Products

Steve Zylkowski Charles Frihart

Forest Service Forest Products Laboratory Research Note FPL–RN–0350 December 2017

Abstract

Thirteen bonded engineered wood products representing those commonly used in building construction were evaluated for volatile organic chemicals using methods developed for interior bonded wood products. Although formaldehyde and acetaldehyde were emitted from all samples, they were not the dominant volatiles, which greatly depended on wood species and bonding processes.

Keywords: volatile organic compounds, engineered wood products, laboratory testing, commercially bonded products

Acknowledgment

This research relied on testing and technical expertise of the Advanced Testing Services Laboratory, Springfield, Oregon. Their support is greatly appreciated. Funding was provided by APA – The Engineered Wood Association, Tacoma, Washington, and USDA Forest Products Laboratory, Madison, Wisconsin, joint grant.

Contents

Introduction	1
Background	1
Product Sampling	2
Testing Method	2
Test Results and Conclusions	4
References	4

December 2017

Zylkowski, Steve; Frihart, Charles. 2017. Volatile organic compound emissions from engineered wood products. Research Note FPL-RN-0350. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. 4 p.

A limited number of free copies of this publication are available to the public from the Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI 53726-2398. This publication is also available online at www.fpl.fs.fed.us. Laboratory publications are sent to hundreds of libraries in the United States and elsewhere.

The Forest Products Laboratory is maintained in cooperation with the University of Wisconsin.

The use of trade or firm names in this publication is for reader information and does not imply endorsement by the United States Department of Agriculture (USDA) of any product or service.

In accordance with Federal civil rights law and U.S. Department of Agriculture (USDA) civil rights regulations and policies, the USDA, its Agencies, offices, and employees, and institutions participating in or administering USDA programs are prohibited from discriminating based on race, color, national origin, religion, sex, gender identity (including gender expression), sexual orientation, disability, age, marital status, family/parental status, income derived from a public assistance program, political beliefs, or reprisal or retaliation for prior civil rights activity, in any program or activity conducted or funded by USDA (not all bases apply to all programs). Remedies and complaint filing deadlines vary by program or incident.

Persons with disabilities who require alternative means of communication for program information (e.g., Braille, large print, audiotape, American Sign Language, etc.) should contact the responsible Agency or USDA's TARGET Center at (202) 720–2600 (voice and TTY) or contact USDA through the Federal Relay Service at (800) 877–8339. Additionally, program information may be made available in languages other than English.

To file a program discrimination complaint, complete the USDA Program Discrimination Complaint Form, AD-3027, found online at http://www.ascr.usda. gov/complaint_filing_cust.html and at any USDA office or write a letter addressed to USDA and provide in the letter all of the information requested in the form. To request a copy of the complaint form, call (866) 632–9992. Submit your completed form or letter to USDA by: (1) mail: U.S. Department of Agriculture, Office of the Assistant Secretary for Civil Rights, 1400 Independence Avenue, SW, Washington, D.C. 20250–9410; (2) fax: (202) 690–7442; or (3) email: program.intake@usda.gov.

USDA is an equal opportunity provider, employer, and lender.

Volatile Organic Compound Emissions from Engineered Wood Products

Steve Zylkowski, Director of Quality Services APA – The Engineered Wood Association, Tacoma Washington

Charles Frihart, Research Chemist USDA Forest Products Laboratory, Madison, Wisconsin

Introduction

Volatile organic compounds (VOCs) are a wide-ranging group of chemicals that contain carbon plus other atoms, such as oxygen and hydrogen, and exist in the gaseous phase at ambient indoor temperature due to their high vapor pressures. Most VOCs around the world are from natural sources such as plants and animals, but some VOCs are emitted from manufactured products, including wood products. At high enough indoor concentrations, VOCs may lead to human discomfort or health issues, especially for high-risk groups such as infants or elderly individuals with compromised respiratory systems (Pappas et al. 2000). This study developed background VOC emission data on commercially available engineered wood products manufactured in North America. Data collected from this research are strictly emission data from product and do not indicate the quantity of VOCs that end up in the indoor environment.

Background

Engineered wood products include structural plywood, oriented strandboard, structural composite lumber, I-joists, and glued-laminated timber. These products are widely used as structural elements of residential and commercial buildings and in the manufacture of industrial goods. Standards applicable to structural engineered wood products establish the suitability of strength properties and adhesive bond durability properties. Engineered wood products are required to be made with moisture-resistant adhesives to meet applicable standards in North America. Due to the nature of these adhesives, the products have relatively low emission rates of formaldehyde, one common type of VOC. As a result, the products are exempt from formaldehyde emission testing and regulations in the United States, such as those required by the California Air Resources Board (CARB 2007) and similar regulations for formaldehyde from composite wood to be implemented by the U.S. EPA in 2017 (EPA 2016).

The health and comfort of occupants in indoor spaces are influenced by environmental conditions, such as temperature and moisture, and also by indoor air components, such as carbon dioxide and VOCs. The many sources of VOCs include interior furnishings (such as furniture and cabinets), wall coverings (such as wallpaper and window curtains), floor coverings (such as wood flooring, rugs, and carpets), household items, consumer items, and even plants (Holz-Forschung 2014, EPA 2017, Kegge et al. 2013).

Elevated VOC concentrations within a structure may naturally diminish over time as some VOCs react to form other chemical compounds. VOCs will also be diluted as air is exchanged with the exterior and as VOCs are absorbed into indoor materials (such as drywall) that act as a "sink." Code changes to promote energy efficiency have led designers to take measures to reduce natural air exchange rates, which tends to decrease the dilution rate of indoor air concentrations of VOCs.

There have been studies on the presence and root sources of VOCs that may exist indoors (HolzForschung 2014, EPA 2017). Most studies have focused on interior surfaces and furnishings as primary sources of VOCs. Recent studies have examined construction materials that may be sources of VOCs (EPA 2016). The contribution of wood building materials to indoor air VOC concentration is a function of type and rate of VOC emissions from the products.

This research is a pilot study to examine type and concentration of VOC emissions from engineered wood products in North America. This study used the testing principles of the *Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers, Version 1.1* from the California Department of Public Health, also known as CDPH 01350 (CDPH 2010), because no standard VOC test method applies to structural products.

The CDPH 01350 evaluation method applies to products used within the envelope of enclosed indoor environments, which can be tested whole or by representative sampling. The method is used to evaluate paints, other architectural coatings and finishes, sealants, adhesives, wall coverings, floor coverings, acoustical ceilings, wood paneling, and wall and ceiling insulation used in public and commercial office buildings, schools, residences, and other building types. The method applies to newly manufactured products before they are installed in construction, finishing, and furnishing of buildings.

Table 1—Description of test samples^a

Product ID	Standard ^b	Description
DF Ply	PS 1	15/32-in. 5-ply plywood with 5 plies of Doug-fir veneer using PF adhesive
SP Ply	PS 1	15/32-in. 4-ply plywood with 4 plies of Southern Pine veneer using PF adhesive
ASP OSB 1	PS 2	7/16-in. aspen OSB using PF adhesive on the outer layers and pMDI adhesive in the inner layers
ASP OSB 2	PS 2	7/16-in. aspen OSB using pMDI adhesive in all layers
SP OSB	PS 2	7/16-in. Southern Pine OSB using PF adhesive in the outer layers and pMDI adhesive in the inner layers
DF LVL 1	ASTM D5456	1-3/4-in. LVL using all DF veneers and PF adhesive
DF LVL 2	ASTM D5456	1-3/4-in. LVL using all DF veneers and PF adhesive and a water repellant sealer on the face and back
DF IJ 1	ASTM D5055	11-7/8-in. I-joist with DF LVL flanges and ASP OSB web; polymer isocyanate adhesive for web-web and web-flange joints
DF IJ 2	ASTM D5055	11-7/8-in. I-joist with DF lumber flanges and ASP OSB web; polymer isocyanate adhesive for web-web and web-flange joints and MF adhesive for flange FJs
DF GL	ANSI A190.1	3-1/8- x 12-in. DF glulam; PRF face adhesive and MF FJ adhesive
SP GL	ANSI A190.1	3-1/8- x 12-in. SP glulam; PRF face adhesive and MF FJ adhesive
SP LVL	ASTM D5456	1-3/4-in. SP LVL using PF adhesive
SP IJ	ASTM D5055	11-7/8-in. I-joist using SP LVL flanges and ASP OSB webs; polymer isocyanate adhesive for web-web and web-flange

^aPly, plywood; DF, Douglas fir; SP, Southern Pine; ASP, aspen; IJ, I-joists; GL, glued-laminated timber; LVL, laminated veneer lumber; PF, phenol formaldehyde; pMDI, polymeric diisocyanate; PRF, phenol resorcinol formaldehyde; OSB, oriented strandboard.

^bASTM D5055, "Standard Specification for Establishing and Monitoring Structural Capacities of Prefabricated Wood I-Joists"; ASTM D5456, "Standard Specification for Evaluation of Structural Composite Lumber Products"; ANSI A190.1-2017, "Standard for Wood Products — Structural Glued Laminated Timber"; U.S. Voluntary Product Standard PS 2-10, "Performance Standard for Wood-Based Structural-Use Panels"; U.S. Voluntary Product Standard PS 1-09, "Structural Plywood."

The scope of CDPH 01350 states that it "*does not* apply to structural building products, janitorial products, air fresheners, electronic air cleaners, and other electronic equipment" (CDPH 2010). Nonetheless, because the testing method within CDPH 01350 follows the basic testing principles for VOCs determination specified in the ASTM D5116 method (ASTM 2010), the test method was determined to be suitable for engineered wood products for the purpose of this study. However, the application of other evaluation principles within CDPH 01350 may not be appropriate for engineered wood products.

Product Sampling

Products listed in Table 1 were sampled by staff of APA – The Engineered Wood Association (APA) at manufacturing facilities. Sampling details included provisions to mitigate risk of contamination and involved wrapping test samples in aluminum foil and polyethylene sheeting prior to shipping them to the test laboratory. The samples were selected to be representative of a common grade and configuration of the product. The product sample size was larger than that required for testing; the samples were trimmed at the laboratory to the appropriate test specimen size prior to testing. Three pieces of each product type were sampled; the actual test specimen was sandwiched between two other samples of the same material.

All samples were shipped or hand-delivered to the Advanced Testing Services (ATS) Laboratory in Springfield, Oregon. The ATS Laboratory is accredited to ISO 17025, "General Requirements for the Competence of Testing and Calibration Laboratories," by the International Accreditation Services (IAS) (ATS Laboratory 2017), with the scope inclusive of the CDPH 01350 test method.

Testing Method

Prior to conditioning and testing, the wood product specimen of controlled size was mounted onto a stainless steel plate with edge taping. Edge taping with low-VOC aluminized tape overlapped the wood specimen by a controlled amount to provide the targeted exposed surface area and sealed the specimen to a stainless steel caul plate.

Following the methods of CDPH 01350, each individual test specimen was pre-conditioned in clean air at 23 °C and 50% relative humidity at an air exchange rate of 1.0 air exchange per hour for 10 days.

		Product ID ^c												
CAS ^b	VOC	DF Ply	SP Ply	ASP OSB1	SP OSB	ASP OSB2	DF LVL1	DF LVL2	DF IJ-LVL	DF IJ-lbr	DF GL	SP GL	SP LVL	SP IJ
50-00-0	Formalde- hyde	0.33	11.38	10.42	25.96	7.74	6.14	5.46	30.67	123.86	24.90	534.39	19.32	13.48
75-07-0	Acetalde- hyde	10.75	43.52	72.58	98.42	46.93	49.46	23.54	50.90	184.07	160.13	22.03	67.32	63.10
110-62-3	Pentanal			120.24	249.82	104.10			35.27	36.81		228.40	96.43	157.21
71-41-0	1-Pentanol		97.54	69.54	190.00				51.43	33.95		48.89		154.96
66-25-1	Hexanal		565.03	1,098.48	721.01	1,153.11	41.47		54.86	95.61		891.26	1,014.48	765.18
80-56-8	α-Pinene	14.85	274.71	32.03			125.64	573.98	48.77	114.11	387.92	127.43	1,371.13	304.68
79-92-5	Camphene									5.87				
108-95-2	Phenol								72.09	40.64				
127-91-3	β-Pinene		135.17				9.83	26.74	15.55	22.40		133.95	463.43	179.52
99-87-6	p-Cymene						6.93		12.55	22.44				
138-86-3	Limonene	4.32	27.39				11.21	41.21	14.56	20.57	32.54	62.52	88.43	45.16
128-37-0	BHT^d								16.24	10.74				
108-65-6	PGMEA ^e				162.32									
109-52-4	Pentanoic acid				99.66				27.04					
111-71-7	Heptanal				72.20									
111-70-6	1-Heptanol				46.52									
124-13-0	Octanol				111.37									
90-02-8	Benzal- dehyde, 2-hydroxy				67.32									
124-19-6	Nonanal				35.47									
	TVOC (toluene eqiv)	23.79	795.72	642.46	921.57	588.76	196.77	699.43	248.67	338.91	461.78	893.05	2,717.62	1,084.18

^aVOC emission results from 96-h test, in ug/m²-h. Blank cells indicate the VOC was not detectable.

^bCAS, Chemical Abstract Service.

^cSee product description in Table 1. ^dBHT, butylated hydroxytoluene.

^ePGMEA, propylene glycol methyl ether acetate.

Immediately following pre-conditioning, testing was conducted in a small-scale environmental chamber measuring 0.067 m³. Chamber conditions were maintained at 23 °C and 50% relative humidity with a clear airflow rate of 1.0 air exchange per hour. The air in the chamber was considered to be fully mixed such that VOC concentration measured at the chamber exhaust was representative of air concentration in the chamber. Air samples from the test chamber were taken at 24, 48, and 96 h using the CDPH 01350 chamber test following the guidance of ASTM D5116 Standard (ASTM 2010).

Each test used a controlled product loading factor (that is, exposed surface area per chamber volume), so an areaspecific emission rate was calculated. The exposed area of the specimen was controlled to provide emissions that optimized the measuring precision of the measurement methods, without overloading the air sampling measurement devices.

Air samples taken at 24 and 48 h were analyzed for total VOC (TVOC) and formaldehyde concentrations. The air sample taken at 96 h was collected using Tenax-TA tubes (TENAX Corp., Baltimore, Maryland) and analyzed for the full characterization of VOC emissions using the dinitrophenylhydrazine (DNPH) or gas chromatograph (GC) methods described in ASTM D5197 (ASTM 2009).

Test Results and Conclusions

Test results (Table 2) from this study provide preliminary information on type and amounts of VOCs emitted from North American engineered wood products. All wood products tested emitted some level of formaldehyde and acetaldehyde. The wood products that contained a pine species emitted some level of alpha and/or beta pinenes. The VOC emission rates seem to indicate an inverse relationship to the amount of heat and processing that the wood was exposed to during the production process. This may indicate that many of the VOCs emitted by the wood products were VOCs naturally occurring in the wood rather than VOCs originating from adhesives, waxes, or sealers used in the manufacturing process. Further testing is scheduled to study VOC emission rates from finished products and the raw wood used in their manufacture to assess the relative VOC emissions from the wood compared to the finished product that contains adhesives, waxes, and sealers that are used in engineered wood product production.

References

ASTM. 2009. D5197-09, Standard test method for determination of formaldehyde and other carbonyl compounds in air (active sampler methodology). West Conshohocken, PA: ASTM International.

ASTM. 2010. D5116-10, Standard guide for small-scale environmental chamber determinations of organic emissions from indoor materials/products. West Conshohocken, PA: ASTM International.

ATS Laboratory. 2017. Advanced Testing Services Laboratory, International Accreditation Services. IAS TL-372. Columbus, OH: Hexion. http://www.hexion.com/ Advanced_Testing_Services_28ATS_29_Laboratory_/

CARB. 2007. Airborne toxic control measure to reduce formaldehyde emissions from composite wood products. Sacramento, CA: California EPA, Air Resources Board. www.arb.ca.gov/regact/2007/compwood07/fro-final.pdf. (Accessed July 7, 2017).

CDPH. 2010. California specification 01350, Standard method for the testing and evaluation of volatile organic chemical emissions from indoor sources using environmental chambers, version 1.1. Sacramento, CA: California Department of Public Health. http://standards.nsf.org/apps/group_public/download.php/11782/CDPH-IAQ_Standard-Method_V1_1_2010%5B1%5D.pdf. (Accessed July 7, 2017).

EPA. 2016. Formaldehyde emission standards for composite wood products. Washington, DC: U.S. Environmental Protection Agency. www.federalregister.gov/ documents/2016/12/12/2016-27987/formaldehydeemission-standards-for-composite-wood-products. (Accessed July 7, 2017).

EPA. 2017. Volatile organic compounds' impact on indoor air quality. Washington, DC: U.S. Environmental Protection Agency. www.epa.gov/indoor-air-quality-iaq/volatileorganic-compounds-impact-indoor-air-quality. (Accessed July 7, 2017).

HolzForschung. 2014. VOC emissions from wood products and indoor air quality. HolzForschung Project Report, 2012–2014. Berlin: HolzForschung.

Kegge, W.; Gankema, P.; Pierik, R. 2013. Plant-produced volatile organic compounds. AccessScience. Columbus, OH: McGraw-Hill Education. https://doi.org/10.1036/1097-8542. YB133331.

Pappas, G.P.; Herbert, R.J.;Henderson, W.; Koenig, J.; Stover, B.; Barnhart, S. 2000. The respiratory effects of volatile organic compounds. International Journal of Occupational and Environmental Health. 6(1): 1-8.