Evaluation of Force Transfer Around Openings – Experimental and Analytical Studies

Effective Date March 21, 2011

Final Report USDA Joint Venture Agreement 09-11111133-117

WOOD The Natural Choice

Engineered wood products are a good choice for the environment. They are manufactured for years of trouble-free, dependable use. They help reduce waste by decreasing disposal costs and product damage. Wood is a renewable, recyclable, biodegradable resource that is easily manufactured into a variety of viable products.

A few facts about wood.

• We're growing more wood every day. Forests fully cover one-third of the United States' and one-half of Canada's land mass. American landowners plant more than two billion trees every year. In addition, millions of trees seed naturally. The forest products industry, which comprises about 15 percent of forestland ownership, is responsible for 41

percent of replanted forest acreage. That works out to more than one billion trees a year, or about three million trees planted every day. This high rate of replanting accounts for the fact that each year, 27 percent more timber is grown than is harvested. Canada's replanting record shows a fourfold increase in the number of trees planted between 1975 and 1990.

• Life Cycle Assessment shows wood is the greenest building product. A 2004 Consortium for Research on Renewable Industrial Materials (CORRIM) study gave scientific validation to the strength of wood as a green building product. In examining building products' life cycles – from extraction of the raw material to demolition of the building at the end

of its long lifespan – CORRIM found that wood was better for the environment than steel or concrete in terms of embodied energy, global warming potential, air emissions, water emissions and solid waste production. For the complete details of the report, visit www. CORRIM.org.

• Manufacturing wood is energy efficient. Wood products made up 47 percent of all industrial raw materials manufactured in the United States, yet consumed only 4 percent of the energy needed to manufacture all industrial raw materials, according to a 1987 study.

Material	Percent of Production	Percent of Energy Use
Wood	47	4
Steel	23	48
Aluminum	2	8

• *Good news for a healthy planet.* For every ton of wood grown, a young forest produces 1.07 tons of oxygen and absorbs 1.47 tons of carbon dioxide.

Wood: It's the natural choice for the environment, for design and for strong, lasting construction.

NOTICE:

The recommendations in this guide apply only to products that bear the APA trademark. Only products bearing the APA trademark are subject to the Association's quality auditing program.

Final Report USDA Joint Venture Agreement 09-11111133-117

Borjen Yeh, Ph.D., P.E. Tom Skaggs, Ph.D., P.E. APA – The Engineered Wood Association, Tacoma, WA

Frank Lam, Ph.D., P.Eng Minghao Li, Ph.D. University of British Columbia, Vancouver, BC

Doug Rammer, Ph.D., P.E. James Wacker, P.E. USDA Forest Products Laboratory, Madison, WI

March 21, 2011

EVALUATION OF FORCE TRANSFER AROUND OPENINGS -AN EXPERIMENTAL AND ANALYTICAL STUDY

Final Report USDA Joint Venture Agreement 09-11111133-117

EXECUTIVE SUMMARY

This report contains research results on one of the major design methods concerning wood structural panel (WSP) sheathed shear walls with openings – force transfer around openings (FTAO). This study was undertaken by a joint effort between *APA* – *The Engineered Wood Association* and the USDA Forest Products Laboratory (FPL), Madison, WI under a joint venture agreement funded by both organizations. The University of British Columbia, Vancouver, BC, provided technical supports and consultation on the computer shear wall model simulation and analysis.

The design method for force transfer around openings has been the subject of interest by some engineering groups in the U.S., such as the Structural Engineers Association of California (SEAOC). Excellent examples of FTAO targeted to practitioners have been developed by a number of sources. However, very little test data are available to confirm design assumptions. Among various techniques that are generally accepted as a rational analysis in practice, drag strut, cantilever beam and Diekmann technique were examined in this study and a wide range of predicted forces was noted. This variation in predicted forces results in some structures being either over-built or less reliable than the intended performance objective.

This research was performed in two parts. Part 1 was an experimental study conducted at APA and Part 2 was a model analysis performed by the UBC based on the experimental study plan from Part 1. This report is presented based on these two approaches. This is the first of a series of studies that are designed to look into this design method in hope for a better characterization and understanding of the method.

This research was supported in part by funds provided by the USDA Forest Products Laboratory, which is acknowledged and greatly appreciated by the project team. Evaluation of Force Transfer Around Openings – Experimental and Analytical Findings

TABLE	OF	CONTENTS
	•••	

PART 1	: FULL-SCALE SHEAR WALL TESTS FOR FORCE TRANSFER AROUND OPENINGS
ABS	TRACT
1.1	Introduction
1.2	Test Plan
1.3	Results
1.4	Summary and Conclusion
1.5	Acknowledgements
1.6	References
Арр	endix A – Cyclic Tests, Global Wall Data
App	endix B – Monotonic Tests, Global Wall Data
Арр	endix C – Hold-down Forces
App	endix D – Anchor Bolt Forces
Арр	endix E – Strap Forces Around Openings
Арр	endix F – Photos
	: MODELING FORCE TRANSFER AROUND SHEAR WALL OPENINGS
	TRACT
1.2	Introduction
2.2	Wall 2D – Shear Wall Model 109
2.3	Model Input
2.4	Modeling Results
2.5	Summary and Discussions
2.6	References

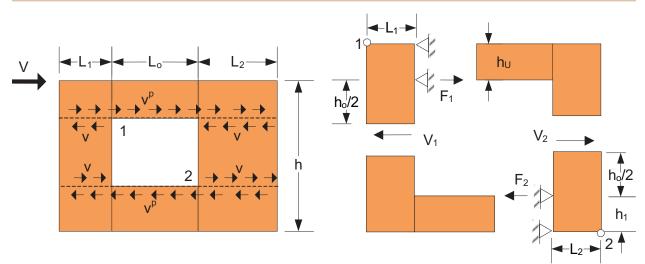
Form No. M410 = © 2011 APA – The Engineered Wood Association = www.apawood.org

PART 1: FULL-SCALE SHEAR WALL TESTS FOR FORCE TRANSFER AROUND OPENINGS

Tom Skaggs, Ph.D., P.E. Borjen Yeh, Ph.D., P.E. *APA – The Engineered Wood Association*

ABSTRACT

Wood structural panel (WSP) sheathed shear walls and diaphragms are the primary lateral-load-resisting elements in wood-frame construction. The historical performance of light-frame structures in North America is very good due, in part, to model building codes that are designed to safeguard life safety. These model building codes have spawned continual improvement and refinement of engineering solutions. There is also an inherent redundancy of wood-frame construction using WSP shear walls and diaphragms. As wood-frame construction is continuously evolving, designers in many parts of North America are optimizing design solutions that require the understanding of force transfer between lateral load-resisting elements.


The North American building codes provide three solutions to walls with openings. The first solution is to ignore the contribution of the wall segments above and below openings and only consider the full-height segments in resisting lateral forces, often referred to as segmented shear wall method. The second approach, which is to account for the effects of openings in the walls using an empirical reduction factor, is known as the "perforated shear wall method." The final method, which has a long history of practical use, is the "force transfer around openings method." This method is codified and accepted as simply following "rational analysis." Much engineering consideration has been given to this topic (SEAOSC Seismology Committee, 2007) and excellent examples targeted to practitioners have been developed by a number of sources (SEAOC, 2002, Breyer et al. 2007, Diekmann, 1998). However, unlike the perforated shear wall method, very little test data has been collected to verify various rational analyses. Typically walls that are designed for force transfer around openings attempt to reinforce the wall with openings such that the wall performs as if there was no opening. Generally increased nailing in the vertical and the horizontal directions as well as blocking and strapping are common methods being utilized for this reinforcement around openings. The authors are aware of at least three techniques which are generally accepted as rational analysis. For this paper, drag strut, cantilever beam and Diekmann technique were used to predict force transfer around openings. These techniques result in wide ranges of predicted forces. This variation in predicted forces results in some structures being either over-built or less reliable than the intended performance objective.

A joint research project of *APA* – *The Engineered Wood Association*, the University of British Columbia (UBC), and the USDA Forest Products Laboratory (FPL) was initiated in 2009 to evaluate the variations of walls with pier widths that meet code prescribed limitations. This study examines the internal forces generated during these tests and evaluates the effects of size of openings, location of openings, size of full-height piers, and different construction techniques by using the segmented method, the perforated shear wall method, and the force transfer around openings method. Full-scale wall tests as well as analytical modeling were performed. The research results obtained from this study will be used to support design methodologies in estimating the forces around the openings. This report provides test results from 8 feet x 12 feet full-scale wall configurations, which will be used in conjunction with the analytical results from a computer model developed by the UBC to develop rational design methodologies for consideration by the U.S. design codes and standards.

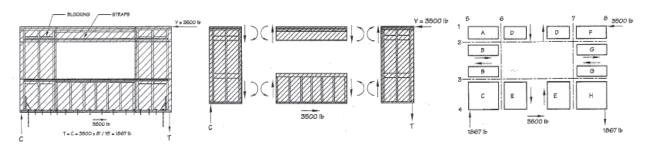
1.1 INTRODUCTION

The North American building codes provide three solutions to walls with openings. The first solution is to ignore the contribution of the wall segments above and below openings and only consider the full-height segments in resisting lateral forces, often referred to as segmented shear wall method. This method could be considered the traditional shear wall method. The second approach, which is to account for the effects of openings in the walls using an empirical reduction factor, is known as the "perforated shear wall method." This method has tabulated empirical reduction factors and a number of limitations on the method. In addition, there are a number of special detailing requirements that are not required by the other two methods. The final method is codified and accepted as simply following "rational analysis." Much engineering consideration has been given to this topic (SEAOSC Seismology Committee, 2007) and excellent examples targeted to practitioners have been developed by a number of sources (SEAOC, 2002, Breyer et al. 2007, Diekmann, 1998). However, unlike the perforated shear wall method, very little test data has been collected to verify various rational analyses. Typically walls that are designed for force transfer around openings attempt to reinforce the wall with openings such that the wall performs as if there was no opening. Generally increased nailing in the vertical and the horizontal directions as well as blocking and strapping are common methods being utilized for this reinforcement around openings. The authors are aware of at least three techniques which are generally accepted as rational analysis. The "drag strut" technique is a relatively simple rational analysis which treats the segments above and below the openings as "drag struts" (Martin, 2005). This analogy assumes that the shear loads in the full-height segments are collected and concentrated into the sheathed segments above and below the openings. The second simple technique is referred to as "cantilever beam." This technique treats the forces above and below the openings as moment couples, which are sensitive to the height of the sheathed area above and below the openings. A graphical representation of these two techniques is given in Figure 1. The mathematical development of these two techniques is presented by Martin (2005).

FIGURE 1

REPRESENTATION OF THE DRAG STRUT TECHNIQUE (LEFT) AND THE CANTILEVER BEAM TECHNIQUE (RIGHT) FOR ESTIMATING FORCES AROUND WALL OPENINGS (MARTIN, 2005)

Finally, the more rigorous mathematical technique is typically credited to a California structural engineer, Edward Diekmann, and well documented in the wood design textbook by Breyer et al. (2007). This technique assumes that the wall behaves as a monolith and internal forces are resolved by creating a series of free body diagrams as illustrated in Figure 2. This is a common technique used by many west coast engineers in North America. Although the technique can be tedious for realistic walls with multiple openings, many design offices have developed spreadsheets


7

based on either the Diekmann method or SEAOC (2002). A known limitation of this technique is that when the height above opening is less than 12 inches, the resolved shear forces become quite large, resulting in the apparent overstressing of the wood structural panel wall sheathing.

Of the three common techniques, the predicted internal forces can vary significantly, based on wall geometry. In extreme cases discussed below, the differences in the predicted internal forces may vary by 800%. The purpose of this research is to provide experimental data for comparison and perhaps improvement to the rational analyses.

FIGURE 2

REPRESENTATION OF THE DIEKMANN TECHNIQUE (1998) AND DRAWINGS FROM BREYER ET AL. (2007). Global free body diaphragm of wall with openings (left), beam behaviour of various sheathed areas (center), and horizontal and vertical cuts for establishing internal shears (right)

1.2 TEST PLAN

In an effort to collect internal forces around openings of loaded walls, a series of twelve wall configurations were tested, as shown in Figure 3. The left hand side of Figure 3 illustrates a framing plan, which also includes anchor bolt and holddown location and additional details. On the right hand side of Figure 3, sheathing and strapping plan is illustrated. This test series is based on the North American code permitted walls nailed with 10d common nails (0.148 inches by 3 inches) at a nail spacing of 2 inches. The sheathing used in all cases was nominal 15/32-inch oriented strand board (OSB) APA STR I Rated Sheathing. All walls were 12 feet long and 8 feet tall. The lumber used for all of these tests was kiln-dried Douglas-fir, purchased from the open market, and was tested after conditioned to indoor laboratory environments (i.e. dry conditions). Each individual 2x4 stud was nailed to the respective end plates with two 16d common (0.162 inch by 3-1/2 inch) end nails. The headers were built-up double 2x12s with a 1/2-inch wood structural panel spacer between the two pieces of lumber. In general, built-up 2x members were face-nailed to each other with 10d common nails face-nailed at 8 inches on center.

The walls were attached to the steel test jig with 5/8-inch diameter anchor bolts with 3x3x0.229-inch square plate washers. In some cases, 5/8-inch Strainsert calibrated bolts were substituted for the anchor bolts such that uplift forces at the anchor bolts could be directly measured. Figure 3 illustrates anchor bolt location and where the calibrated bolts were located. The overturning of the walls was resisted by Simpson Strong-Tie HDQ8 Hold-downs, attached to the double 2x4 end studs with 20 - 1/4-x3-inch SDS screws. These hold-downs were attached to the steel test jig with 7/8-inch diameter bolts. In some cases, 7/8-inch calibrated bolts were substituted for the hold-down bolts such that hold-down forces could be directly measured.

Wall 1 is based on the narrowest segmented wall (height-to-width ratio of 3.5:1) permitted by the code with overturning restraint (hold-downs) on each end of the full-height segments. Simpson Strong-Tie HDQ8 hold-downs were used to resist the overturning restraint for the twelve wall configurations. The height of the window opening for Wall 1 is common to many walls tested in this plan, at 3 feet. Walls 2 and 3 are based on the perforated shear wall method, $C_0 = 0.93$. Hold-downs are located on the ends of the wall with no special detailing other than the compression blocking on Wall 3. Wall 4 is a force transfer around openings wall which has identical geometry to Walls 1, 2 and 3, and is used to compare the various methods for designing walls with openings.

Wall 5 has the same width of piers as the first four walls. However, the opening height was increased to 5 feet. Wall 6 was common to Wall 4 with the exception that the typical 4 feet x 8 feet sheathing was "wrapped around" the wall opening in "C" shaped pieces. This framing technique is commonly used in North America. It can be more time efficient to sheath over openings at first and then remove the sheathing in the openings area via a hand power saw or router.

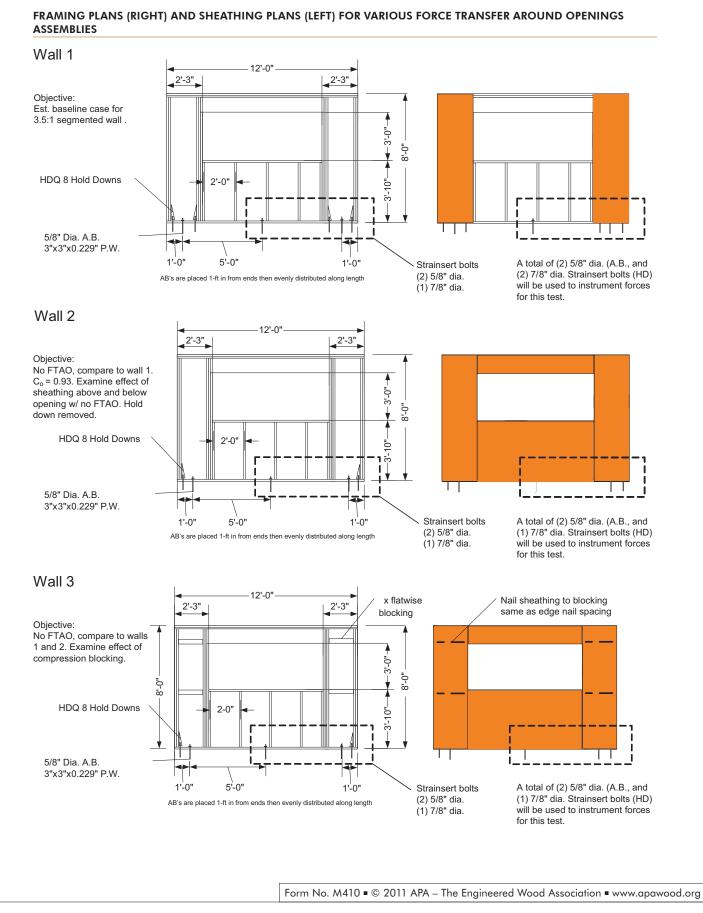
Wall 7 is a segmented wall with height-to-width ratio of the full-height segments to 2:1. Wall 8 is a match to Wall 7, but designed as a force transfer around openings wall. The window height in Wall 9 is increased from 3 feet to 5 feet tall. Walls 10 and 11 contain very narrow wall segments for use in large openings such as garage fronts. The two walls are designed with openings on either side of pier and only on wall boundary, respectively. Finally, Wall 12 contains a wall with two asymmetric openings.

Most walls were tested with a cyclic loading protocol following ASTM E 2126, Method C, CUREE Basic Loading Protocol. The reference deformation, Δ , was set as 2.4 inches. The term α was 0.5, resulting in maximum displacements applied to the wall of +/- 4.8 inches. This displacement level was based on APA's past experience with cyclic testing of WSP shear walls. The displacement-based protocol was applied to the wall at 0.5 Hz with the exception of Wall 8b, which was loaded at 0.05 Hz. Two walls (Wall 4c and 5c) were tested following a monotonic test in accordance with ASTM E 564.

Several different top plate boundary conditions were used for this series of tests. Table 1 lists which load head was used for the various tests. The first load head used was deemed the "short" load head. The load head was fabricated from two commercial hold-downs, and attached to the top of the wall with a number of 1/4-inch diameter self-drilling, self-tapping lag screws. The intent was that the short load head would not provide additional stiffness to the double wood top plate of the wall. The racking loads were transferred into the first full-height pier, and the load head did not extend to the header. However, as wall forces became larger, the load head resulted in a large concentrated force at the end of the load head. Figure F1 shows a double top plate net section fracture, as related to the short load head.

An intermediate load head was also utilized in some of the tests. The intermediate load head was a longer channel that was built up by welding two angles, toe-to-toe, together. The load head was directly connected to the top of the wall with a number of 1/4-inch diameter self-drilling, self-tapping lag screws. This load head provided very little additional stiffness to the double top plate of the wall. However, the length of the load head did not extend the entire length of the 12-foot-long walls, thus providing different top plate boundary conditions over the two full-height piers. There was also some concern that the internal forces on one end of the wall were being transferred through the load head, and not through the straps. Figure F2 shows this load head.

A special cyclic "long" load head was fabricated that extended the entire length of the wall. This load head "floated" over the wall, making no direct continuous contact to the top of the wall, thus assuring all force continuity on the walls intended for studying force transfer around openings was achieved via the straps. The racking forces were transferred directly into the double top plates by end-grain bearing, for both the "push" and the "pull" cycle. Large diameter bolts were installed in slotted holes (slots parallel to length of wall) into the full-height piers. The purpose of these bolts and slotted holes was to eliminate racking forces from being transferred through the bolts, while providing restraints that forced the wall to remain planar. Figure F3 shows this load head.


9

Finally, monotonic racking tests were conducted with the load being transferred directly into the top plate; thus no load head was utilized. The wall remained planar via structural tubes and low friction rub blocks directly bearing on face and back side of wall. Figure F4 shows this setup.

For walls detailed as force transfer around openings, two Simpson Strong-Tie HTT22 hold-downs in line (facing seatto-seat) were fastened through the sheathing and into the flat blocking (Wall 4 in Figure 3, Figure 5, and Figure F12 in Appendix F illustrate this detail). The hold-downs were intended to provide similar force transfer as the typically detailed flat strapping around openings. The hold-downs were connected via a 5/8-inch diameter calibrated tension bolt for measuring tension forces.

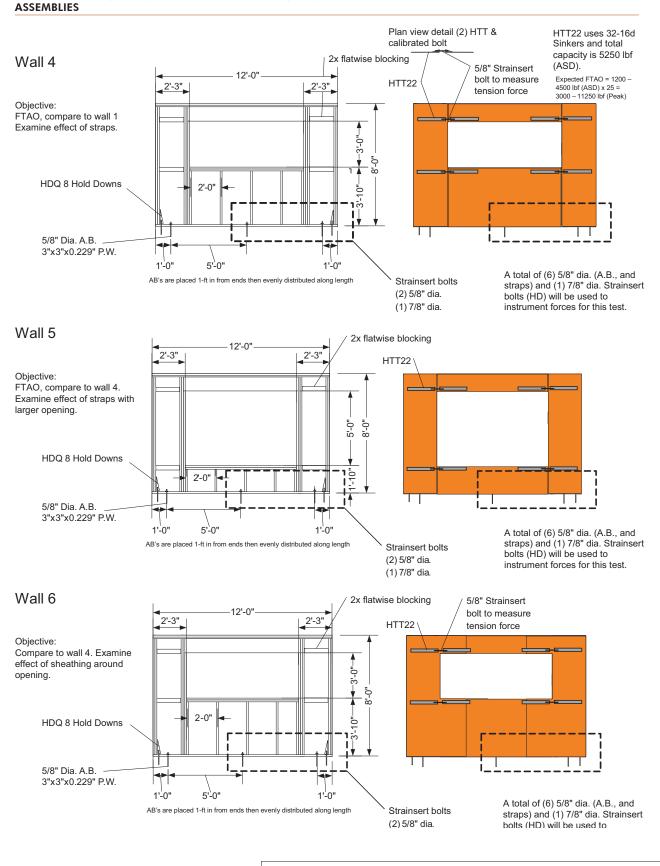
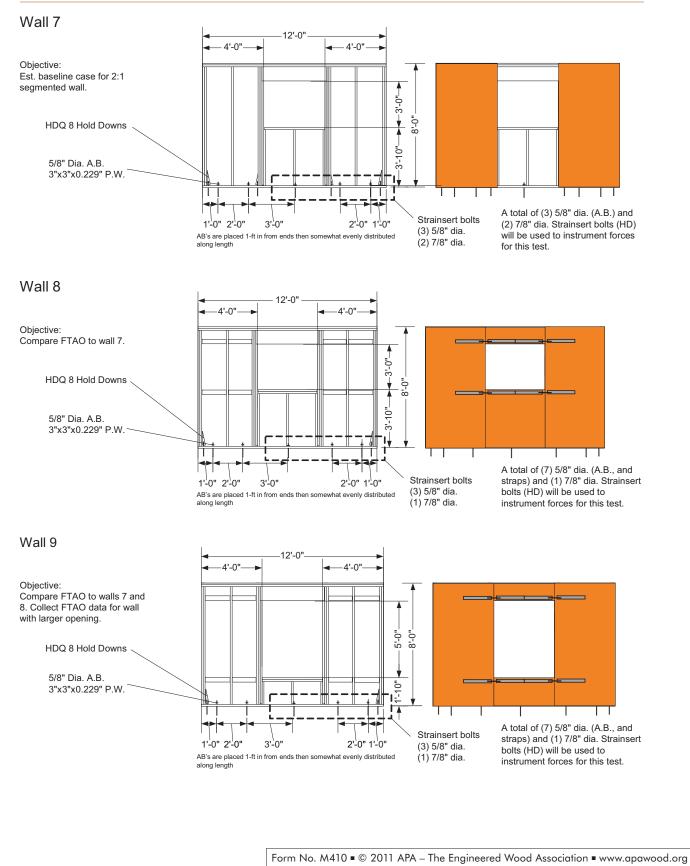

11

FIGURE 3

12

FIGURE 3 (Continued)



FRAMING PLANS (RIGHT) AND SHEATHING PLANS (LEFT) FOR VARIOUS FORCE TRANSFER AROUND OPENINGS

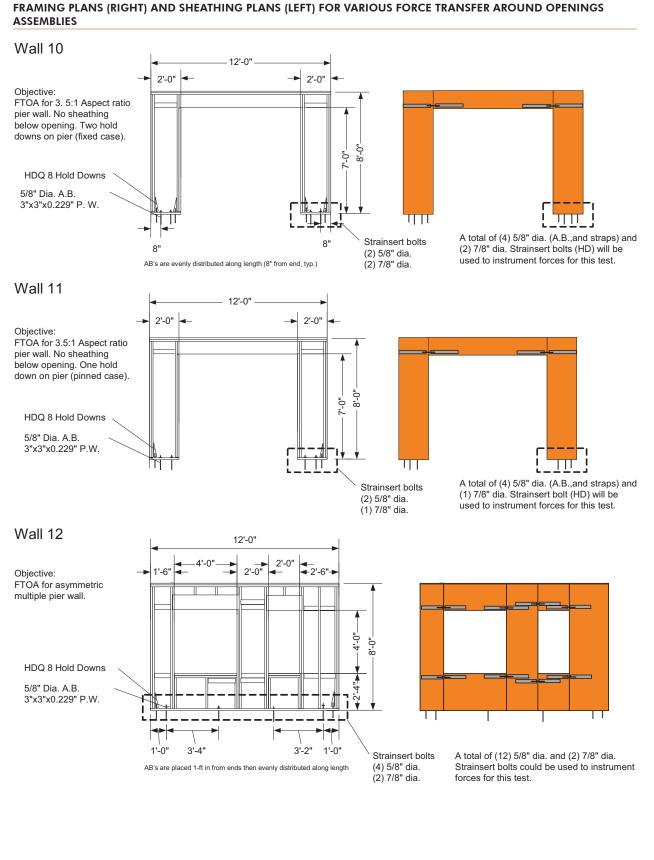
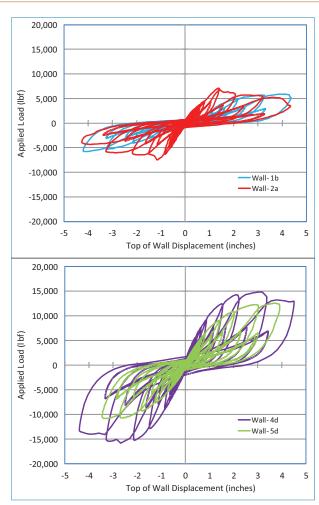

Form No. M410 = © 2011 APA – The Engineered Wood Association = www.apawood.org

FIGURE 3 (Continued)

FRAMING PLANS (RIGHT) AND SHEATHING PLANS (LEFT) FOR VARIOUS FORCE TRANSFER AROUND OPENINGS ASSEMBLIES

FIGURE 3 (Continued)



1.3 RESULTS

Global Response

Cyclic hysteretic plots and various cyclic parameters of the individual walls are provided in Appendix A of this report. Monotonic plots are provided in Appendix B, hold-down force plots are provided in Appendix C, and finally anchor bolt forces plots are provided in Appendix D of this report. Figure 4 are hysteric plots of the applied load versus the displacement of the walls. The response curves are representative for all walls tested. One can observe the relatively increased stiffness of perforated shear walls (Wall 2) versus the segmented walls (Wall 1). However, the relatively brittle nature of the perforated walls should be noted as the perforated shear walls resulted in sheathing tearing. As one might expect, the walls detailed for force transfer around openings (Wall 4d and 5d) demonstrated increased stiffness as well as strength over the segmented walls. In addition, the response of the walls was related to opening sizes with the larger openings resulting in both lower stiffness and lower strength.

FIGURE 4

HYSTERETIC BEHAVIOUR OF VARIOUS WALLS, TYPICAL OF THE CYCLIC TESTS

Form No. M410 = © 2011 APA – The Engineered Wood Association = www.apawood.org

Table 1 represents the maximum loads resisted by the various walls and calculated load factors. The expected wall capacity is based on the code listed allowable unit shear multiplied by the effective length of the wall, as determined by the sum of the lengths of the full-height piers. For the perforated shear walls, a further factor of C_o was included. Table 1 also provides measured hold-down forces as observed when the wall was subjected to ASD unit shear, which resisted overturning of the segments.

TABLE 1

GLOBAL RESPONSE OF TESTED WALLS

Wall ID	ASD Unit Shear ⁽¹⁾ , V (plf)	Effective Wall Length ⁽²⁾ (ft)	Wall Capacity ⁽³⁾ (lbf)	Average Applied Load to Wall (lbf)	ASD Load Factor ⁽⁴⁾	Outboard Hold-down Force (lbf)	Inboard Hold-down Force (lbf)	Load Head
Wall 1a Wall 1b		4.5 4.5	3,915 3,915	5,421 5,837	1.4 1.5	7,881 6,637	5,313 6,216	Short Short
Wall 2a Wall 2b	-	4.5 4.5	3,631 3,631	7,296 6,925	1.9 1.8	2,216 3,248	0,210	Short Long
Wall 3a Wall 3b		4.5 4.5	3,631 3,631	10,370 8,955	2.6 2.3	2,602 4,090		Short Long
Wall 4a Wall 4b Wall 4c ⁽⁵⁾ Wall 4d	_	4.5 4.5 4.5 4.5	3,915 3,915 3,915 3,915 3,915	14,932 17,237 17,373 15,328	3.8 4.4 4.4 3.9	1,140 3,674 1,336 1,598		Short Intermediate None Intermediate
Wall 5b Wall 5c ⁽⁵⁾ Wall 5d	-	4.5 4.5 4.5	3,915 3,915 3,915	13,486 11,887 11,682	3.4 3.0 3.0	5,216 4,795 4,413		Intermediate None Long
Wall 6a Wall 6b	870	4.5 4.5	3,915 3,915	11,948 13,582	3.1 3.5	1,573 1,285		Long Long
Wall 7a Wall 7b		8 8	6,960 6,960	12,536 10,893	1.8 1.6	6,024 6,577	3,677 3,844	Short Long
Wall 8a Wall 8b ⁽⁶⁾	-	8 8	6,960 6,960	15,389 15,520	2.2 2.2	4,805 5,548		Long Long
Wall 9a Wall 9b		8 8	6,960 6,960	15,252 16,647	2.2 2.4	4,679 5,212		Long Long
Wall 10a Wall 10b		4 4	3,480 3,480	7,473 6,976	2.1 2.0	5,311 4,252	5,690 3,731	Long Long
Wall 11a Wall 11b		4 4	3,480 3,480	6,480 5,669	1.9 1.6	6,449 5,843		Long Long
Wall 12a Wall 12b		6 6	5,220 5,220	16,034 15,009	3.1 2.9	2,856 3,458		Long Long

(1) Typical tabulated values are based on allowable stress design (ASD) unit shear.

(2) Based on sum of the lengths of the full-height segments of the wall.

(3) The shear capacity of the wall, V, is the sum of the full-height segments times the unit shear capacity. For "perforated shear walls" (Walls 2 & 3), this capacity was multiplied by $C_o = 0.93$. No reduction was taken based on aspect ratio of the walls.

(4) Wall capacity divided by the average load applied to the wall.

(5) Monotonic test.

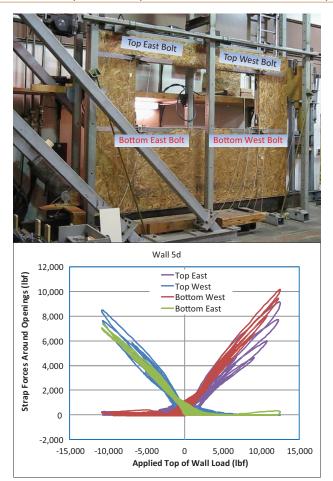
(6) Loading time increased by 10x.

In general, the segmented walls (Wall 1 and Wall 7) resulted in the lowest load factors of the walls tested. The perforated shear wall (Wall 2) also performed at a lower level than the walls specifically detailed with force transfer around openings. Surprisingly, the compression blocking with no straps (Wall 3a) resulted in a significantly improved performance over Wall 2. Another general observation is that the larger the wall opening, the lower the load factors. The wall global behaviour seemed to be insensitive to the different loading rate (Walls 8a and 8b). In addition, the walls

16

with typical window openings that are sheathed both above and below openings, and the walls with the narrowest piers (height-to-width ratios of 3.5:1) based on the minimum pier width permitted in the North American codes (Walls 3, 4, 5 and 6) resulted in higher load factors than walls with full-width piers at a height-to-width ratio of 2:1 (Walls 7, 8 and 9).

A variety of failure modes were observed, as shown in Appendix F. In general, lumber failure was not a significant limit state with the exception of the wall shown in Figure F1. The more typical failure modes were related to wood panel tearing around the openings, as illustrated in Figures F5 through F8, and F12. The traditional shear walls (Walls 1 and 7) showed more classic failure modes. Figure F9 illustrates a typical failure mode of nail head pulling out of the side of the panel. Nail head pullout was also a common failure mode, as illustrated in Figure F10.


Table 1 also lists the average outboard hold-down response of the walls, when the walls were subjected to the ASD design load. The data is not conclusive on the effect of the load head length on the overturning hold-down forces. The repeatability of the hold-down forces was not as good as the overall global response of the walls. Wall 4b had relatively high hold-down forces, but did not match well with the other hold-down forces observations on Wall 4. Given the lack of conclusive data, only observations can be provided. Based on comparisons of Walls 5c and 5d, the difference between no load head and the long load head appears to be relatively minor. In general, the long load head appears to lead to relatively higher hold-down forces as compared to the short load head (Wall 2a vs 2b and Wall 7a vs 7b). As a recommendation for future tests on force transfer around openings, the load head should not be in direct contact with the top of the wall so that the top plate is not stiffened by the load head, and more importantly, avoiding a parallel force transfer load path via the load head. Cyclic hysteretic plots and various cyclic parameters of the individual walls are provided in Appendix A of this report. The backbone curves and the equivalent energy elastic-plastic curves were analyzed by an Excel spreadsheet, which follows the procedures outlined in ASTM E2126. Monotonic plots are provided in Appendix B,

Hold-down, Anchor Bolt and Strap Force Responses

The hold-down force plots are provided in Appendix C of this report. The internal forces around openings were measured with calibrated tension bolts, as discussed in the test plan above (also see Figures F12 and F13). The anchor bolt uplift force plots are provided in Appendix D. Finally, the strap forces plots are presented in Appendix E. Figure 5 illustrates the notation of the force gages as well as a typical response curve of wall load versus internal force around opening. The response curves show hysteretic behaviour, which is likely due to cumulative damage of the wall as well as the orientation of the bolt recording tension forces as may be influenced by the differential displacement of the hold-down seats in the vertical direction. Deflection measurements may potentially be used to correct the load to "pure horizontal tension." However, in the range of the wall ASD values, the internal load response was relatively linear elastic. Table 2 provides a summary of the predicted forces based on the various techniques. Table 3 provides a comparison of the measured internal forces at the wall at the allowable value to the predicted strap forces. The measured internal forces were taken at the cycle in which the walls were loaded to the allowable design value.

FIGURE 5

NOTATION OF INTERNAL FORCE GAGES (TOP FIGURE), AND TYPICAL RESPONSE CURVE (BOTTOM FIGURE)

TABLE 2

PREDICTED STRAP FORCES AT THE ASD DESIGN CAPACITY OF THE WALLS

		Predicted S	trap Forces at ASD C	apacity (lbf)	
	Drag Strut 1	lechnique	Cantilever Be	am Technique	Diekmann Technique
Wall ID	Тор	Bottom	Тор	Bottom	Top/Bottom
Wall 4	1,223	1,223	4,474	2,724	1,958
Wall 5	1,223	1,223	6,151	4,627	3,263
Wall 6	1,223	1,223	4,474	2,724	1,958
Wall 8	1,160	1,160	7,953	4,842	1,856
Wall 9	1,160	1,160	7,953	6,328	3,093
Wall 10	1,160	n.a. ⁽¹⁾	7,830	n.a. ⁽¹⁾	n.a. ⁽¹⁾
Wall 11	1,160	n.a. ⁽¹⁾	7,830	n.a. ⁽¹⁾	n.a. ⁽¹⁾
Wall 12	653	1,088	4,784	4,040	1,491

(1) Not applicable.

Form No. M410 = © 2011 APA – The Engineered Wood Association = www.apawood.org

TABLE 3

INTERNAL FORCES OF TESTED WALLS AT THE ASD DESIGN CAPACITY AS COMPARED TO VARIOUS PREDICTED STRAP FORCES

			Error	²⁾ for Predicted	Strap Forces at t	he ASD Design	Value
		ed Strap ; (lbf) ⁽¹⁾	Drag Strut	Technique	Cantilever Be	am Technique	Diekmann Technique
Wall ID	Тор	Bottom	Тор	Bottom	Тор	Bottom	Top/Bottom
Wall 4a	687	1,485	178%	82%	652%	183%	132%
Wall 4b	560	1,477	219%	83%	800%	184%	133%
Wall 4c ⁽³⁾	668	1,316	183%	93%	670%	207%	149%
Wall 4d	1,006	1,665	122%	73%	445%	164%	118%
Wall 5b	1,883	1,809	65%	68%	327%	256%	173%
Wall 5c ⁽³⁾	1,611	1,744	76%	70%	382%	265%	187%
Wall 5d	1,633	2,307	75%	53%	377%	201%	141%
Wall 6a	421	477	291%	256%	1,063%	571%	410%
Wall 6b	609	614	201%	199%	735%	444%	319%
Wall 8a	985	1,347	118%	86%	808%	359%	138%
Wall 8b ⁽⁴⁾	1,493	1,079	78%	108%	533%	449%	124%
Wall 9a	1,675	1,653	69%	70%	475%	383%	185%
Wall 9b	1,671	1,594	69%	73%	476%	397%	185%
Wall 10a	1,580	n.a. ⁽⁵⁾	73%	n.a. ⁽⁵⁾	496%	n.a. ⁽⁵⁾	n.a. ⁽⁵⁾
Wall 10b	2,002	n.a. ⁽⁵⁾	58%	n.a. ⁽⁵⁾	391%	n.a. ⁽⁵⁾	n.a. ⁽⁵⁾
Wall 11a	2,466	n.a. ⁽⁵⁾	47%	n.a. ⁽⁵⁾	318%	n.a. ⁽⁵⁾	n.a. ⁽⁵⁾
Wall 11b	3,062	n.a. ⁽⁵⁾	38%	n.a. ⁽⁵⁾	256%	n.a. ⁽⁵⁾	n.a. ⁽⁵⁾
Wall 12a	807	1,163	81%	94%	593%	348%	128%
Wall 12b	1,083	1,002	60%	109%	442%	403%	138%

(1) Reported strap forces were based on the mean of the "East" and "West" recorded forces at the capacity of the walls as tabulated in Table 1.

 (2) Error based on ratio of predicted forces to mean measured strap forces. For Diekmann method, the larger of the top and bottom strap forces was used for calculation. Highlighted errors represent non-conservative predictions and significant ultra-conservative prediction (arbitrarily assigned as 300%).
 (3) Monotonic test.

(4) Loading time increased by 10x.

(5) Not applicable.

As shown in Table 3, the measured strap forces were based on the mean east and west strap forces for the top and bottom of the opening. As demonstrated in Figure 5, the strap forces were symmetric about the y-axis, thus averaging strap forces was justifiable.

Model Comparisons to Experimental Strap Forces

Table 2 provides the predicted strap forces at the wall ASD value for the three techniques discussed above. The calculation of these forces is beyond the scope of this paper. However, Martin (2005) covers the drag strut and cantilever beam calculations, and Breyer (2007) covers the Diekmann calculations.

The Diekmann technique assumes symmetric forces at the top and bottom of the window opening to wall interface; hence the maximum of the two measured strap forces was used for the error calculation in Table 3. Also included in Table 2 is the error, in percent, of the calculated strap forces. There is shading for predictions that fall below 100% of the observed strap forces, which would be considered non-conservative. The errors are also shaded when the predictions exceed the measured forces by three times (300%), which are considered excessively conservative.

Several items may be observed from the test results reported in Table 2. The measured strap forces for Wall 6 were smaller than that for the matching wall, Wall 4. This is due to the fact that the forces were transferred through the wrap-around OSB sheathing in Wall 6, thus less demand was placed on the straps. Also, as one would expect, as the openings in the walls increased, the strap forces increased. In addition, as the width of the full-height pier decreased, the relative magnitude of the strap forces increased. The largest strap forces, relative to the applied load, were

19

observed for the large garage-type openings, Walls 10 and 11. Other observations are that the strap forces are reasonably repeatable and that the strap forces are relatively insensitive to loading rate (Walls 8a and 8b) and cyclic versus monotonic loading (Walls 4c and 5c).

Several observations can also be made about the three methods for predicting strap forces. First, the drag strut technique, arguably the simplest method for estimating strap forces, resulted in predicted strap forces that were less than the observed strap forces for nearly every wall. The cantilever beam technique was, by far, the most conservative method. For every wall tested, the cantilever beam technique over-predicted at least one of the strap forces by more than 300 percent. It should also be noted that although the cantilever beam technique decouples the strap forces at the top and the bottom of the window, it always predicted the strap forces at the top of the wall as higher than the bottom of the wall, which is based on the underlying assumption of the moment couples, since the height of the sheathed area above the wall was consistently less than the height of the sheathing below the opening for the walls tested.

Finally the Diekmann technique provided reasonable predicted results (within 190 percent) for all walls with the exception of Wall 6. As discussed above, Wall 6 was an atypical wall since the sheathing wrapped around the opening, thus the forces were transferred through the sheathing as opposed to the strap forces. It is important to note that even though the Diekmann technique provides reasonable prediction, it is still quite crude and extremely conservative in some cases. Improved force transfer around openings design procedures could result in more efficient sizing of straps, blocking, and nailing to transfer forces around openings.

1.4 SUMMARY AND CONCLUSION

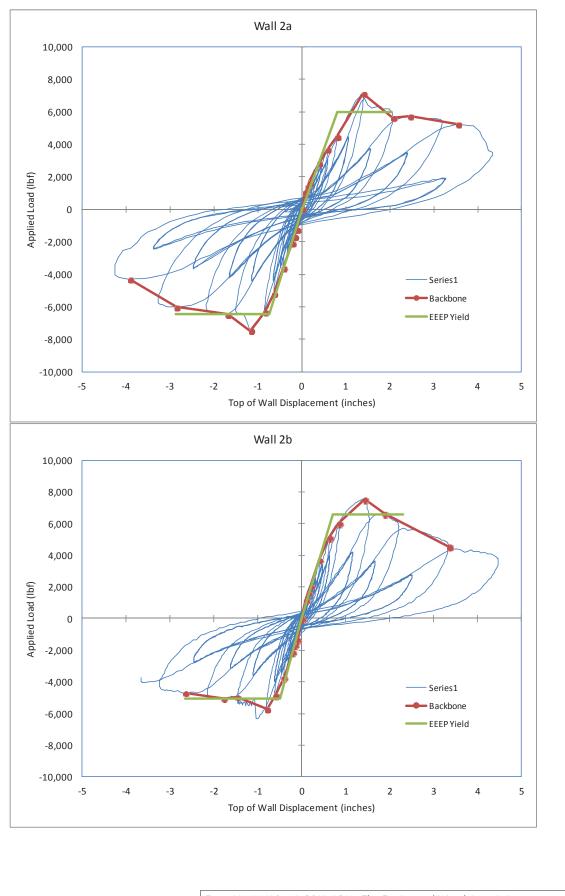
Twelve different wall configurations were tested to study the effects of openings on both the global and local responses of walls. The replications showed good agreement between each other, even when test duration was extended to ten times greater the original duration. In terms of the global response, the segmented wall approach resulted in walls with the lowest load factors (based on observed global load divided by allowable capacity of the walls), followed by walls built as perforated shear walls (i.e., no special detailing for forces around openings), and finally the walls specifically detailed for force transfer around openings. In general, as opening sizes were increased, the wall strength and stiffness values were negatively impacted. An unexpected observation was that for walls with typical window openings, the walls with the narrowest piers based on the minimum pier width permitted in the North American codes resulted in higher load factors than walls with full-width piers (height-to-width ratio of 2:1).

Of the twelve wall configurations tested, internal forces were collected on eight of the configurations. For the walls tested, the measured forces at the bottom of the windows were greater than the measured forces at the top of the window. Also, as expected, as the window opening was increased and as the pier width was decreased, the strap forces was increased relative to the global applied force to the wall. Of these eight configurations, it could be concluded that the drag strut technique consistently underestimated the strap forces, and the cantilever beam technique consistently overestimated the strap forces. The Diekmann technique, the most computationally intensive technique, seemed to provide reasonable strap force predictions for the walls with window type openings.

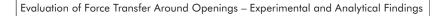
1.5 ACKNOWLEDGEMENTS

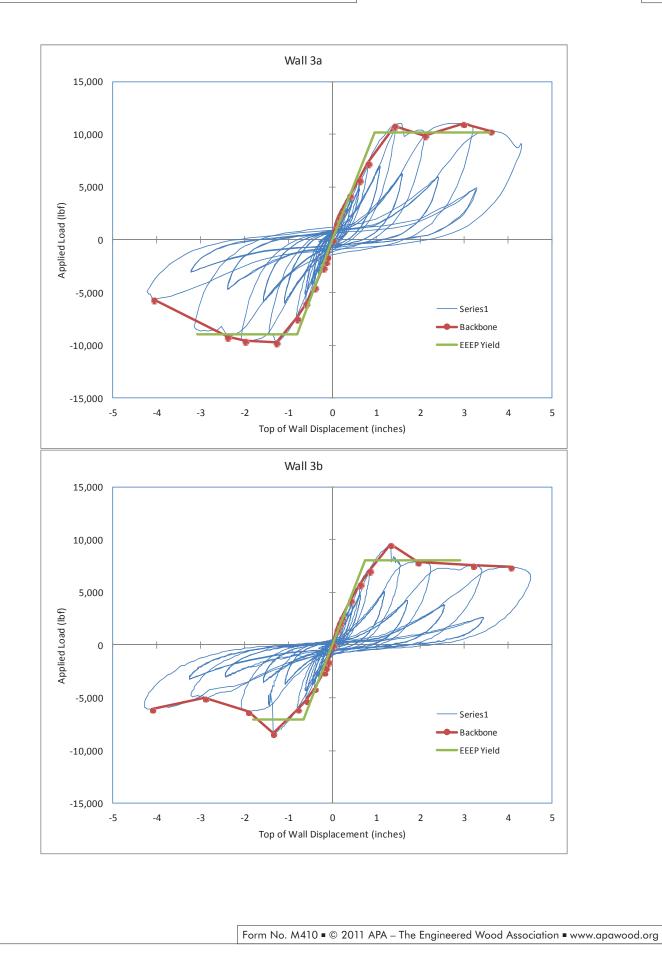
The authors would like to thank Zeno Martin for his initial work on this project, Tom VanDorpe for comments on an earlier draft of this report, and Alex Salenikovich for sharing his cyclic data analysis program. This work is a joint research project of *APA* – *The Engineered Wood Association*, the University of British Columbia, and the USDA Forest Products Laboratory. This research was supported in part by funds provided by the USDA Forest Products Laboratory.

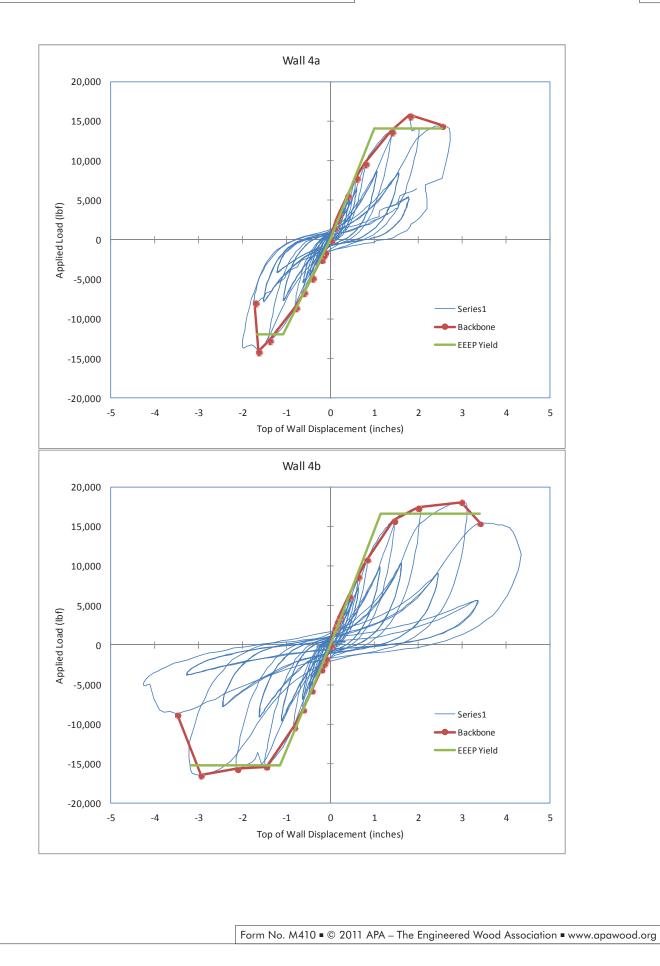
1.6 REFERENCES

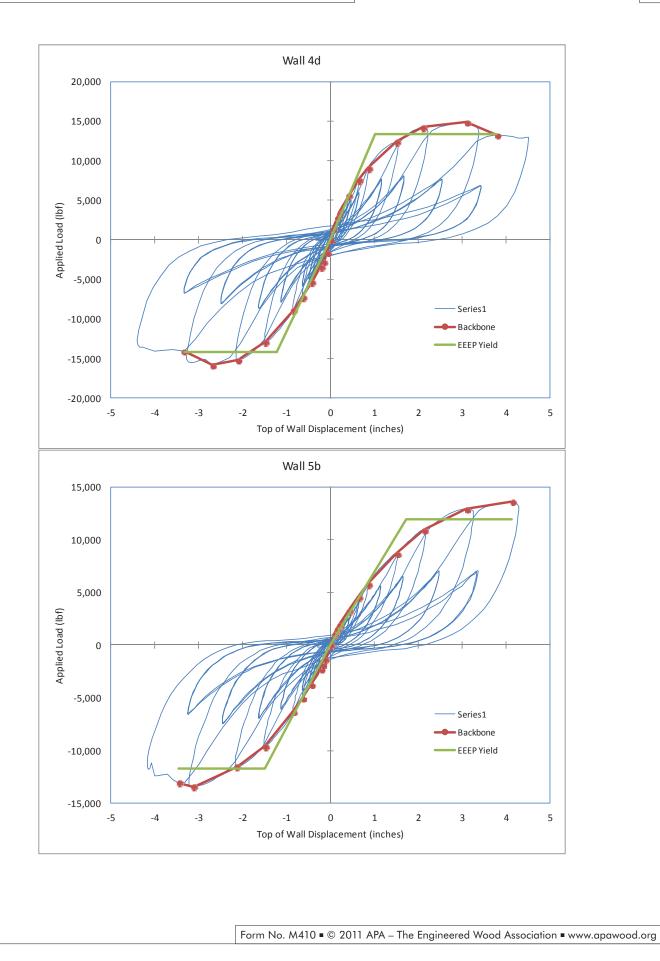

- 1. ASTM International. 2009. Standard Test Methods for Cyclic (Reversed) Load Test for Shear Resistance of Vertical Elements of the Lateral Force Resisting Systems for Buildings, ASTM E 2126 09. West Conshohocken, PA.
- 2. ASTM International. 2009. *Standard Practice for Static Load Tests for Shear Resistance of Framed Walls for Buildings,* ASTM E 564 06. West Conshohocken, PA.
- 3. Breyer, D. E., K. J. Fridley, K. E. Cobeen and D. G. Pollock. 2007. *Design of Wood Structures ASD/LRFD*, 6th ed., McGraw Hill, New York, NY.
- Diekmann, E. F. 1998. Diaphragms and Shearwalls, Wood Engineering and Construction Handbook, 3rd ed., K. F. Faherty and T. G. Williamson, eds, McGraw-Hill, New York, NY.
- 5. Kolba, A. 2000. *The Behavior of Wood Shear Walls Designed Using Diekmann's Method and Subjected to Static In-Plane Loading.* Thesis submitted in partial fulfillment for the degree of Doctor of Philosophy. Marquette University.
- Martin, Z. A. 2005. Design of Wood Structural Panel Shear Walls with Openings: A Comparison of Methods. Wood Design Focus. 15 (1): 18 – 20.
- 7. SEAOC. 2002. Seismic Design Manual, Volume II: Building Design Examples Light Frame, Masonry and Tilt-Up (1997 UBC), Structural Engineers Association of California, Sacramento, CA.
- 8. SEAOC Seismology Committee. 2007. "Openings in Wood Frame Shear Walls," January 2007. *The Seaoc Blue Book: Seismic Design Recommendations*. Structural Engineers Association of California, Sacramento, CA.

Wall 1a 8,000 6,000 4,000 2,000 (lbf) 0 0 -2,000 2,000 Series1 -4,000 Backbone EEEP Yield -6,000 -8,000 -5 -4 -3 -2 -1 0 1 2 3 4 5 Top of Wall Displacement (inches) Wall 1b 8,000 6,000 4,000 2,000 0 0 -2,000 2,000 Series1 -4,000 Backbone EEEP Yield -6,000 -8,000 -2 2 3 4 5 -5 -4 -3 -1 0 1 Top of Wall Displacement (inches)

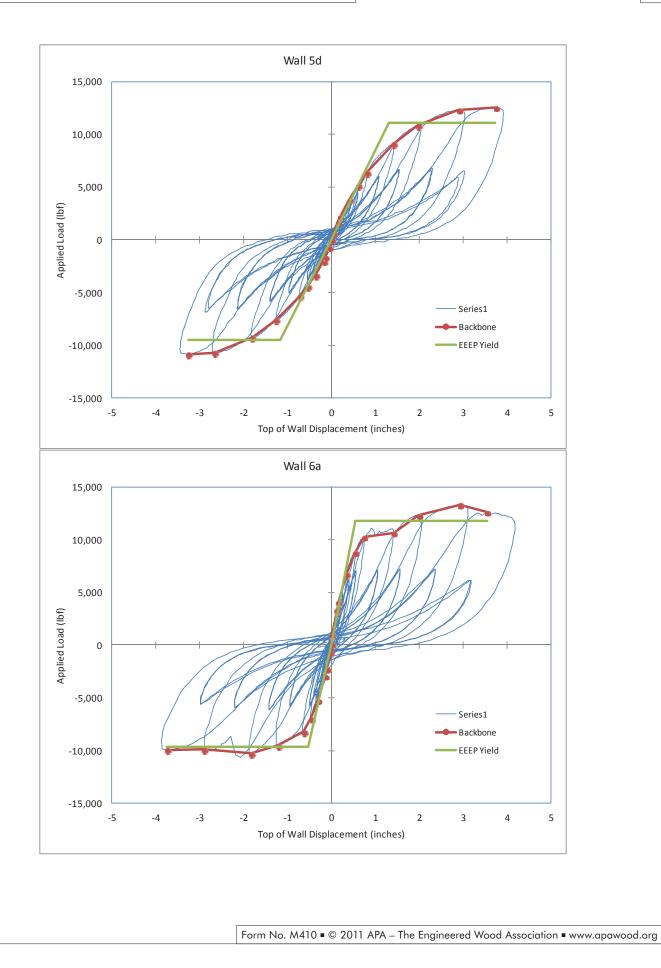

APPENDIX A - CYCLIC TESTS, GLOBAL WALL DATA

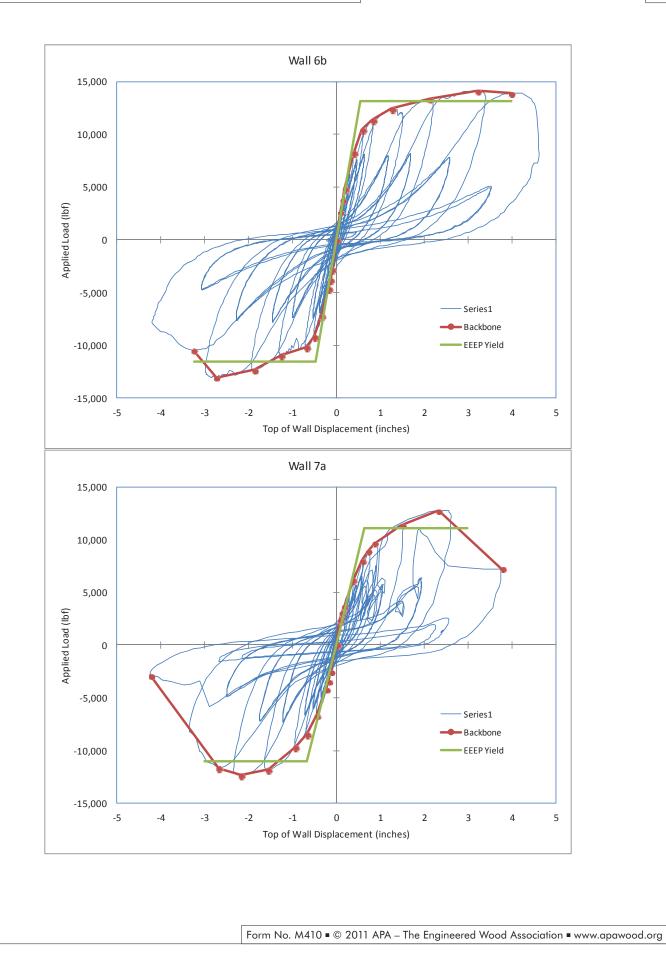

Form No. M410
© 2011 APA – The Engineered Wood Association
www.apawood.org

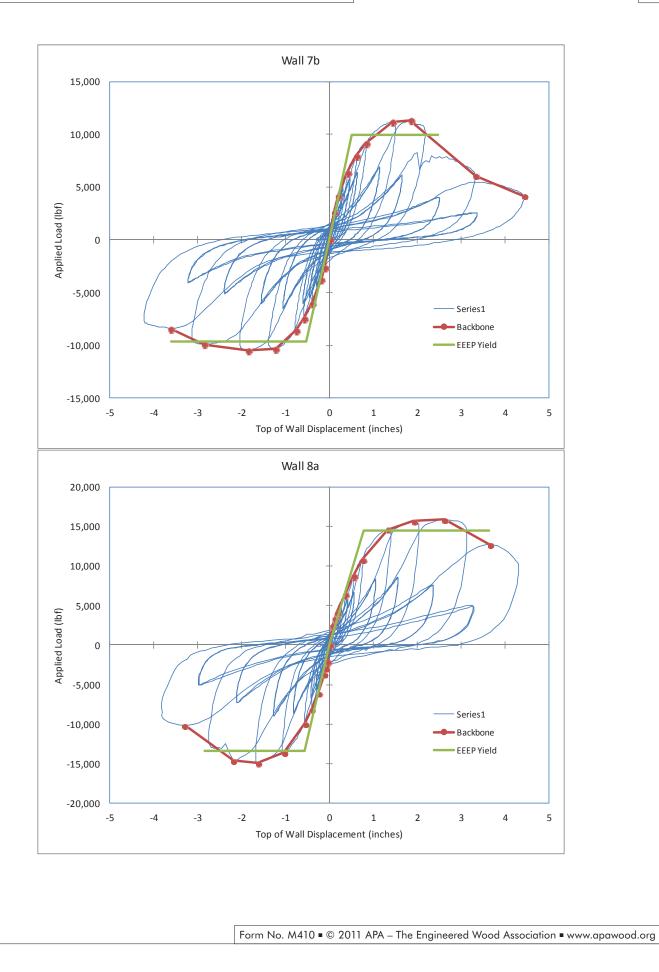


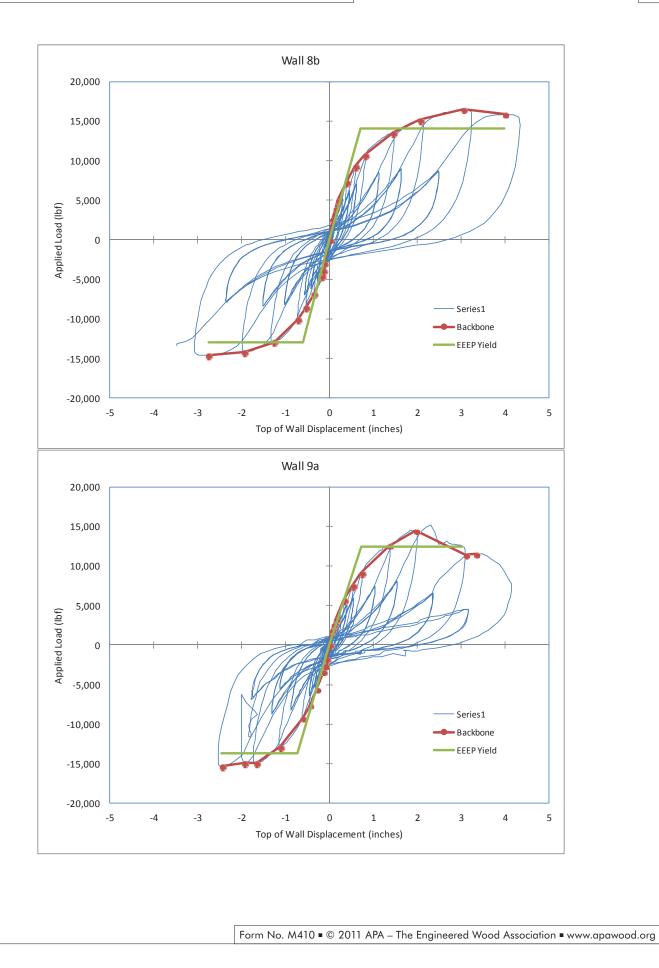


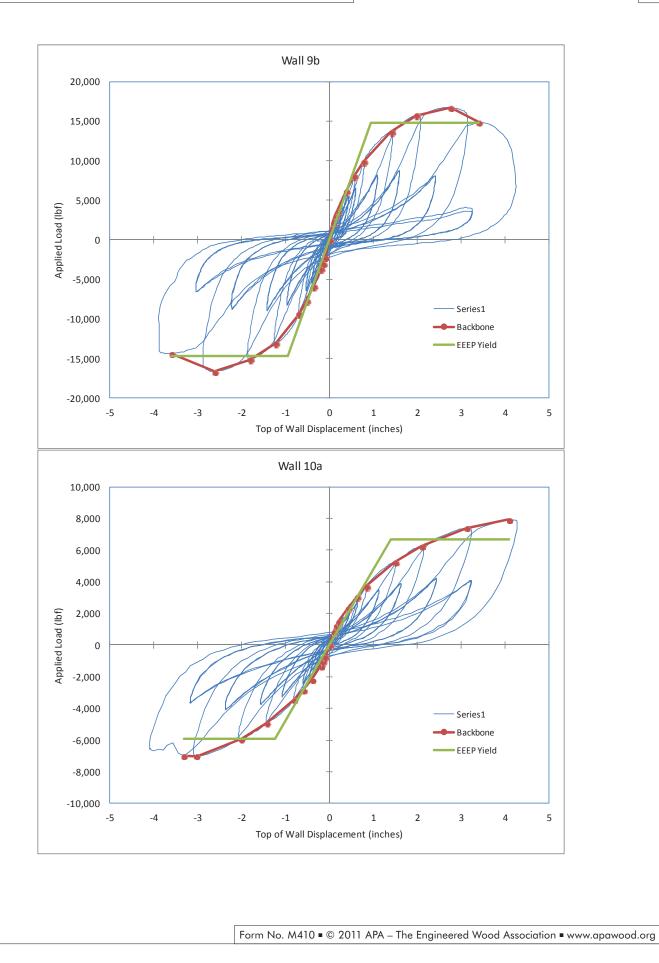
Form No. M410
© 2011 APA – The Engineered Wood Association
www.apawood.org

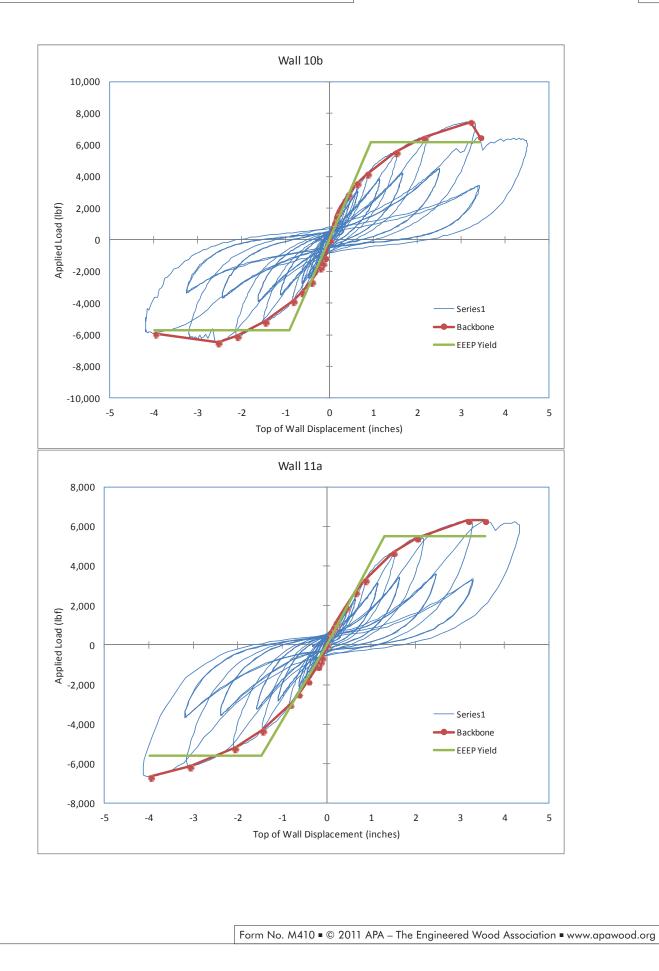


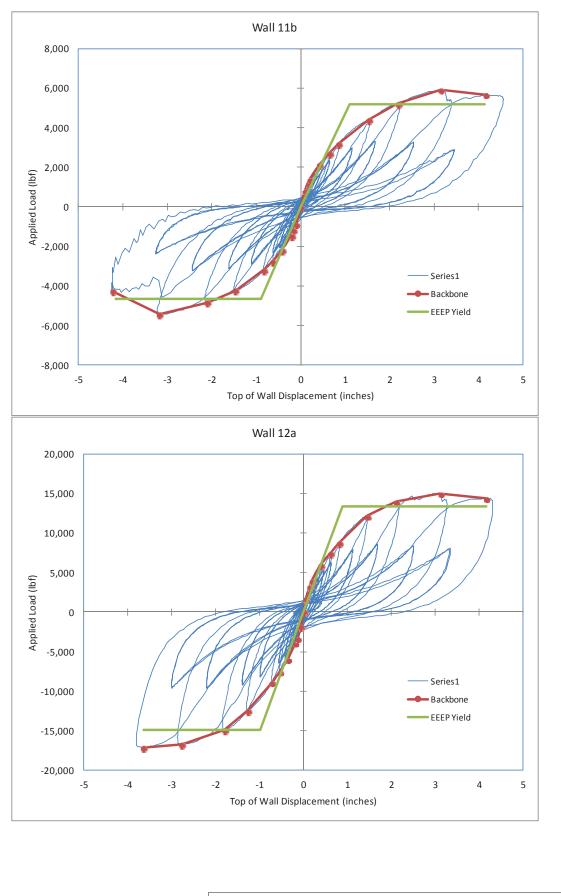


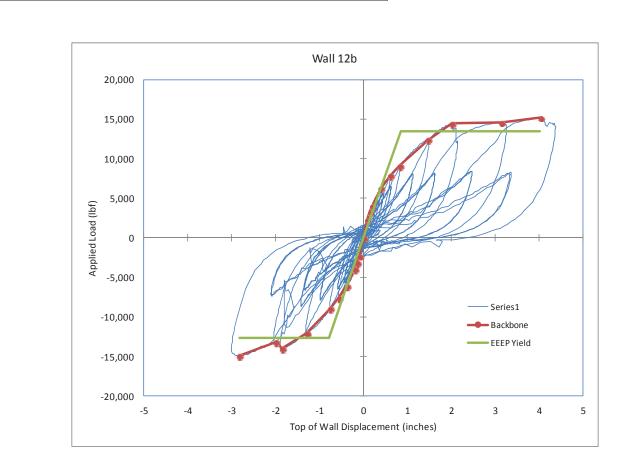











Evaluation of Force Transfer Around Openings – Experimental and Analytical Findings

Form No. M410
© 2011 APA – The Engineered Wood Association
www.apawood.org

$ \begin{array}{ $	Specimen 1a	For total length		Specimen 1a	Per unit length	Π	Specimen	la	For total length	length									
		CUREE cyclic			Ĕ				CUREE of	volic test									
Presentes Tank Parte Tank Parte Tank Parte Constrained Cons	tive wall length	\neg		Effective wall length	\neg		Effective wal	l length	96in.	-									;
	Date:		Т	Date:			cycle	avg. displ	acement	<u>pò</u>	pad	work pe	er cycle	cumulat	the work	cychc	stituess	damping	hne
RS 531 Deturnmet, was state RSM bit 531 Deturnmet, was state Col C <	EEP Parameters		mitial	EEEP Parameters		utital	initial	si	mm	Kips	N	Kipit	KNin	Kip-ft.	KNim	Kip/in	KN/mm	ratio	number
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Peak load, Feed		5.421	Peak unit load, v _{eak}		0.678		0 0	0 0	0	0 7	0.00	0 0	0 0	0 0				n 1
			11.5			9.888		260.0	2.5.29	CI4.0	1.840	500.0	c00.0	500.0	c00'0	4.200	56/.0	0/1/0	9
	at peak load. A		3.409	Drift at capacity. A.		3.409	-	0.142	3.608	0.578	2.570	0.006	0.008	0.026	0.035	4.063	0.711	0.140	698
			86.59			86.59	14	0.193	4.910	0.708	3.149	0.009	0.013	0.058	0.079	3.651	0.639	0.129	1398
	ield load. F		5.042	Yield unit load. V	-	0.630	21	0.403	10.235	1.223	5.440	0.052	0.043	0.124	0.168	3.032	0.531	0.123	2097
	1995		2.428	the contract of the contract o	_	9.198	25	0.614	15.601	1.701	7.565	0.062	0.085	0.233	0.315	2.768	0.485	0.114	2497
	A beat blainer		1.935	Date serviced load a		1.935	29	0.825	20.960	2.153	9.575	0.098	0.133	0.416	0.564	2.609	0.457	0.106	2897
	at yield noon white		49.16	Mage there are a start and the start		49.16	32	1.452	36.887	3.524	15.676	0.309	0.418	0.811	1.100	2.428	0.425	0.115	3197
	oportional limit,		2.168	Proportional limit,		0.271	35	2.060	52.319	4.514	20.076	0.555	0.753	1.583	2.147	2.192	0.384	0.114	3497
	0.4Fpeak		9.644	0.4v _{peek}		3.955	38	2.912	73.956	5.290	23.532	1.196	1.621	3.168	4.295	1.822	0.319	0.148	3797
	ift at prop. limit,		0.832	Drift at prop. limit,		0.832	41	3.974	100.951	5.333	23.720	1.527	2.070	5.428	7.359	1.342	0.235	0.138	4098
Kins 1336 Unit nod at failure or m Kins 1335 Unit nod at failure or m 0.324 m 3254 Dit at failure or m 3254 Dit at failure or m 3254 Dit at failure or m 3254 Klym 0.66 Star modulut, G Kiym 0.05 Star modulut, G Kiym 0.05 Klym 0.69 Gurdu of failure or m 0.05 Star modulut, G Kiym 0.05 Klym 0.69 Gurdu of failure or m 0.05 0.05 0.05 0.01 0.05 Klym 2.06 Moria modifailure or m 0.05 0.01 0.01 0	$\Delta @0.4F_{purk}$		21.14	$\Delta @ 0.4 v_{park}$		21.14	14	0.303	7.689	0.247	1.099	0.007	0.010	6.497	8.808	0.696	0.122	0.176	4409
	re load or 0.8Fpack		4.336	Unit load at failure or	_	0.542													
		T	1544	V.OV park	- -	750 2													
Kipin 205 Star modulu, G Kipin 205 Star modulu, G Kipin 205 Kupin 0.45 $0.04F_{\rm min}$ 0.45 0.47 0.45 0.47 0.45 Kupin 6.47 With miletin EXhima 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.95 0.44 0.95 0.44 0.95 0.44 0.95 0.44 0.95 0.44 0.95 0.44 0.95 0.44 0.95 0.44 0.95 0.44 0.95 0.96	t at failure, $\Delta_{\rm feines}$	È	\$2.66	_		\$2.66													
	stic stiffness, K.	-	1.605			2.605													
Kup fit 6.497 Work until future per Kup fit 6.497 Work until future per Kup fit 0.412 Work until future per Kup fit 0.412 Mark fit <	@0.4F	÷	0.456			0.456													
KNm S308 Wurlt Heigh KNm 3.008 Wurlt Heigh KNm 3.101 Wurlt Heigh KNm 3.101 Wurlt Heigh KNm 3.101 Wurlt Heigh KNm 3.101 Wurlt Heigh Ara. KIph Initial Initial Initial Initial Initial Initial KN KN Total KN Total KN Total KN Total KN Total KN Initial Initial Initial Initial KN Initial K	ork until failure	-	5.497			0.812													
App Line Current one (g) 2.11 Cur		+	8.808			3.612	-1			The state of the s	- Andrew	V	1	The state of the s	- Andrew		11-12	Think Issue	1/11
All + 7.36 (6.13) mm (6.14) mm (7.1) All mm (6.14) mm (7.1) All mm (7.1) m (7.1) All mm (7.1) All mm (7.1) All m (7.1) All mm (7.1) All m (7.1) All mm (7.1)	040 (g) -2.4 III.		210.1			1910	cycle	Negauve	SULOKE	LOSIUM	e stroke	Muegan	e su oke	L 02BIA	e stroke	AIE	Np-In.	UBIT 1030	I, KN/M
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(uuu cr.s)	1	\$704	(mm c1.8)		/02.1	INITIAL	ei -	sdira	ei -	sdivi	uuu	NN	uuu	NN	Degative	avintsod	negative	bosinve
KN 6.223 (12.19 um) KN/m 2.552 1 -0.091 -0.414 0.002 0.414 0.007 -0.095 -0.755 KNs 1.085 0.143 0.011 0.014 0.027 0.144 0.027 0.144 0.027 0.019 0.0	oad @ .48 in.		1.399	Unit load @ .48 in.	-	0.175		0	0	0	0	0	0	0	0	0	0	0	0
Kips 2.449 Unit load @ .96 in Kips in the load @ .96 in 2.149 Unit load @ .96 in 2.003 0.037 0.064 1.142 2.033 0.037 0.034 0.031 0.036 0.031 0.036 0.007 0.064 1.142 1.142 1.142 2.783 0.036 0.006 0.112 2.006 0.006 0.006 0.011 0.006 0.011 0.007 0.064 1.142 2.783 0.006 0.112 2.006 0.006 1.142 2.906 0.006 0.114 0.237 1.108 0.400 1.137 2.1036 2.783 2.133 2.006 0.006 1.142 2.295 2.1132 0.837 2.1173 2.167 2.332 2.832 2.832 2.832 2.934 1.770 1.182 2.934 1.770 1.182 2.934 1.770 1.780 6.544 0.211 2.934 1.770 1.780 6.944 2.125 2.133	(12.19 mm)		6.223	(12.19 mm)		2.552	1	160.0-	-0.414	0.092	0.416	-2.314	-1.840	2.344	1.852	0.019	0.019	-0.755	0.760
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	oad @ .96 in.	_	2.449	Unit load @ .96 in.	-	0.306	1	-0.140	-0.529	0.144	0.627	-3.551	-2.351	3.665	2.788	0.023	0.027	-0.964	1.143
Kips 3.768 Unit load @ 1.6 in Kips 6.874 21 0.397 -1.108 0.471 21 -0.397 -1.006 4.930 10.384 5.949 0.184 0.201 -2.022 Kiv 16.762 (40.64 mm) Kiv 25 0.604 -1.631 0.604 -1.631 0.604 -1.631 0.604 -0.637 2.1325 1.3852 7.875 0.204 0.335 2.995 1.6 $\sqrt{2}$ $\sqrt{2}$ 0.604 -1.631 0.604 -1.631 0.604 -1.631 0.637 7.355 1.3852 7.875 0.394 1.790 1.389 -2.995 2.995 -2.	(24.38 mm)		0.895	(24.38 mm)		4.468	14	-0.185	-0.626	0.201	0.790	-4.709	-2.785	5.110	3.513	0.026	0.040	-1.142	1.441
Kix 16.762 (40.64 mm) KN/m 6.874 25 0.604 1.770 -1.534 -7.355 1.3852 7.875 0.234 0.335 -2.975 1.6 ζ_{in} @V _{pek} 0.143 29 0.604 -1.631 0.604 -1.631 0.604 -1.631 0.337 2.173 -2.955 0.304 0.335 -2.975 0.334 0.335 -2.975 0.334 0.335 -2.955 0.344 0.335 -2.955 0.234 0.335 -2.955 0.344 1.770 -1.550 0.337 2.173 -2.0657 0.394 0.430 -3.857 minital megative positive 0.335 -2.035 -2.039 -4.666 0.430 -2.955 0.464 1.770 -3.857 1.102 0.394 0.470 -3.657 Kiv -3.519 2.067 0.315 2.0145 -2.952 1.667 2.934 -1.056 0.786 Kiv	oad @ 1.6 in.	-	3.768	Unit load @ 1.6 in.		0.471	21	-0.397	-1.108	0.409	1.338	-10.086	-4.930	10.384	5.949	0.184	0.221	-2.022	2.440
1.65 C ₅₄ @V _{put} 0.143 29 -0.813 -2.173 -2.0663 -9.484 21.257 9.667 0.394 0.410 -3.889 mittin 0.814 5.125 9.667 0.394 0.400 Kips Kips Kips Kips mittin -1.901 1.879 mittin -5.366 0.480 -5.366 -5.366 -5.366 -5.366 -5.366	(40.64 mm)	_	6.762	(40.64 mm)	-	6.874	25	-0.604	-1.631	0.624	1.770	-15.349	-7.255	15.852	7.875	0.284	0.335	-2.975	3.229
32 -1.436 -3.587 1.460 3.461 -36.467 -15.957 37.308 1.5394 1.779 1.780 -6.544 units megnive positive 20.31 -4.696 3.6407 -15.957 37.308 1.394 1.770 1.780 -6.544 wirts megnive positive 20.31 -5.134 4.331 -5.136 2.138 2.394 1.770 1.780 -6.544 Kips -5.214 4.870 38 -2.773 -5.366 3.031 5.138 2.3388 2.337 7.148 2.350 4.344 -5.536 3.048 2.3306 3.435 2.336 3.448 -5.536 Kips -5.01 4.045 5.475 9.9137 -2.3306 10.2746 2.435 2.316 9.448 Kips -5.510 4.045 0.332 0.480 -6.949 0.0066 8.428 2.316 9.436 kips -1.91 1.879 -1.9105 0.332 0.480	sctility factor, μ		1.68	Cap @Vpeek	-	0.143	29	-0.813	-2.132	0.837	2.173	-20.663	-9.484	21.257	9.667	0.394	0.420	-3.889	3.964
initial 35 -2.039 -4.696 2.081 4.331 -51.78 -30.859 52.850 19.264 2.408 2.384 -8.567 units userative positive 5.314 -51.78 -3.038 5.364 -8.567 8.567 8.567 8.567 2.038 5.364 -8.567 8.567 8.567							32	-1.436	-3.587	1.469	3.461	-36.467	-15.957	37.308	15.394	1.779	1.780	-6.544	6.313
units meanine 38 -2.773 -5.366 3.051 5.215 -70.485 2.3196 3.602 4.619 -9.788 KNs -5.214 4.870 -3.091 -5.190 4.045 5.475 -90.157 -3.366 3.692 4.619 -9.788 KNs -3.514 4.870 -3.190 1.015 0.137 -3.306 10.2746 3.455 -9.468 KNs -3.612 0.609 4.1 -3.204 -5.190 4.045 5.316 -9.468 KNs -9.512 8.894 - -0.274 0.015 0.332 0.480 -6.949 0.0666 8.423 -11.056 0.077 KNs -1.901 1.879 - -0.274 0.0150 0.480 -6.949 0.0066 8.428 -11.056 0.077 KNs -1.901 1.879 - -0.234 0.046 8.428 -11.056 0.077 mm -50.57 4.774 - - -			init	ial			35	-2.039	-4.696	2.081	4.331	-51.788	-20.889	52.850	19.264	2.498	2.384	-8.567	7.900
Kips -5.214 4.870 4.1 -3.904 -5.190 4.045 5.475 -99.157 -1.35.06 10.2746 2.135 9.316 -9.468 KIN -3.5119 21.662 0.44 -0.274 0.015 0.332 0.440 5.475 -99.157 -1.33 5.316 -9.468 KIN -3.5119 21.662 4.4 -0.274 0.015 0.332 0.480 -6.949 0.006 8.428 2.1133 -9.394 -11.056 0.027 KNim -9.512 8.84 -1.991 1.879 -9.324 -1.1056 0.027 mm -50.57 47.74 0.132 0.480 -6.949 0.0066 8.428 2.1133 -9.394 -11.056 0.027 mm -50.57 47.74 -5.428 2.1133 -9.394 -11.056 0.027 mm -50.57 47.74 -1.056 0.027	EP Parameters	\vdash	egative	positive			38	-2.773	-5.366	3.051	5.215	-70.427	-23.867	77.485	23.196	3.692	4.629	-9.788	9.513
KN -23.193 21.662 44 -0.274 0.015 0.332 0.480 -6.949 0.066 8.428 -11.056 0.027 KDbs: R. -0.652 0.609 8.428 2.133 -9.394 -11.056 0.027 KDbs: R. -0.652 0.609 8.428 2.133 -9.394 -11.056 0.027 KDbs: R. -0.652 0.609 8.428 2.133 -9.394 -11.056 0.027 Im -1.901 1.879 -1.901 1.879 -1.901 1.879 mm -50.57 47.74 -1.901 0.045 -1.901 0.045 mm -50.54 40.45 -0.45 -0.45 -0.45 -0.45	þ		5.214	4.870			41	-3.904	-5.190	4.045	5.475	-99.157	-23.086	102.746	24.354	5.970	5.316	-9.468	9.988
Klpsft0.652 KV/m -9.512 in -1.991 mm -50.57 in -3.904 mm 0.16	- yield		13.193	21.662			44	-0.274	0.015	0.332	0.480	-6.949	0.066	8.428	2.133	-9.394	-11.056	0.027	0.875
KXVin -9.512 in -1.991 in -3.004 mm -3.004 mm -0.15		_	0.652	0.609															
in1.901 mm -50.57 in3.904 mm -00.16	Plant,		9.512	8.834															
ii3.904	Areas		166 1	1.879															
		1	10.00	47.74 4 045															
	∆ fidhare		21.00	20.001															

Form No. M410 = © 2011 APA – The Engineered Wood Association = www.apawood.org

5.421

5.475

-5.366 8

units Kips

ltimate parameters Fsts

S'I S

	OCURRENT Synte est OCURRENT Synte est OCURRENT Synte est Unitity 2.44mm Unitity 2.637 Kups 5.837 Kups 5.837 Kups 5.837 Kups 5.8448 Inam 103.33 Kups 5.4448 Inam 103.33 Kups 2.4448 Inam 61.88 Kups 2.435 Kups 2.435 Ino 2.435 Ino 2.435 Ino 2.335 Kin 2.335 Ino 2.135 Ino 2.10386 Ino<	Effective wall length Date: EEEP Parameters Peak unit load, v _{pek} Drift at capacity, v _{pek} Vield unit load, v _{pek}	š⊢		Effective wall length		5	2.44m									
u 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Date: EEEP Parameters Peak unit load, v _{pek} Drift at capacity, s _{pid} Vield unit load, v _{pidd} Drift at yield load, s _{pidd}	-	╈		culour a	1							:			
		EEEP Parameters Peak unit load, v _{reik} Drift at capacity, A _{reik} Yield unit load, v _{yidd} Drift at yield load, A _{jidd}		_	CYCLE	avg. displacement	tement	avg. lo	load	work per cycle	r cycle	cumulative work	ve work	CVCDC	cyclic stiffness	damping	line
		Peak unit load, v _{pek} Drift at capacity, s _{pek} Yield unit load, v _{pek} Drift at yield load, s _{pek}		\vdash	initial	.si	mm	Kips	KN	Kip-ft.	KN·m	Kip-ft.	KN·m	Kip/m.	KN/mm	ratio	number
		Driff at capacity, A _{pask} Yield unit load, v _{jask} Driff at yield load, A _{jask}	Kip/ft. 0 KN/m	0.730 10.648	-	0.102	0 2.595	0.361	1.604	0.002	0.003	0.002	0.003	3.534	0.619	0.114	103
		Yield unit load, v _{yidd} Drift at yield load, A _{yidd}		4.068	1	721.0	3.980	0.497	2.213	0.004	0.006	0.016	0.022	3.178	0.557	0.100	705
		Yield unit load, v _{yield} Drift at yield load, A _{yield}	_	0.607	71 :	0.210	5.333	0.620	2.760	0.007	0.010	0.039	0.052	2.954	0.517	0.107	1405
		Drift at yield load, $\Delta_{\rm piete}$	KNm I	0.026	72	0.645	16.389	1.444	6.424	0.057	0.078	0.192	0.260	2.239	0.392	0.118	2505
		title income many i an array		2.436	29	0.859	21.821	1.909	8.493	0.093	0.126	0.374	0.508	2.223	0.389	0.109	2905
			_	61.88	32	1.508	38.307	3.499	15.563	0.284	0.385	0.755	1.024	2.319	0.406	0.103	3205
		Proportional limit, 0.4v	Kipft.	0.292	35	2.138	54.314 80.758	5 408	19.925 24.455	1 263	0.801	1.601	2.170	2.095	0.367	0.118	3505
		Drift at prop. limit,		1.038	84	4.068	103.328	5.837	25.965	1.772	2.402	5.934	8.045	1.435	0.251	0.142	4106
	1	$\Delta @ 0.4 v_{park}$		26.35	44	0.311	7.904	0.298	1.327	0.011	0.014	7.106	9.634	0.970	0.170	0.220	4424
r the former	4.670	Unit load at failure or 0.8v	Kipfi KNin	0.584													
		Drift at failure Acc.	_	3.275													
			mm	83.19													
		Shear modulus, G	-	2.251													
÷	m 0.394	(20.4F pack Work until failure nor	-	0.394													
				3.951													
	0.831	Unit load @ 32 in.		0.104	cycle	Negative stroke	troke	Positive stroke	stroke	Negative stroke	stroke	Positive stroke	stroke	Area,	Area, Kip-in.	Unit load, KN/m	, KN/m
(8.13 mm) KN	3.697	(8.13 mm)	_	1.516	initial	.si	Kips	.ei	Kips	uuu	KN	mm	KN	negative	positive	negative	positive
Load @ .48 in. Kips	1.135	Unit load @ .48 in.		0.142		0	0	0	0	0	0	•	0	0	0	0	0
	5.049	(12.19 mm)		2.071	1	-0.102	-0.491	0.102	0.230	-2.586	-2.184	2.603	1.023	0.025	0.012	-0.896	0.420
Load @ .96 in. Kips	2.155	Unit load @ .96 in.		0.269	7	-0.156	-0.662	0.157	0.333	-3.967	-2.945	3.993	1.481	0.031	0.015	-1.208	0.607
		(24.38 mm)		3.931	14	-0.210	-0.790	0.210	0.451	-5.339	-3.513	5.326	2.007	0.039	0.021	-1.441	0.823
Load @ 1.6 in. Kips	3.642	Unit load @ 1.6 in.	Kips/ft. 0	0.455	21	-0.428	-1.207	0.430	0.873	-10.859	-5.367	10.932	3.882	0.217	0.146	-2.201	1.592
	-	C. (DV	+	0.142	20	0.857	1 072	198.0	1971	242.02	20L 8-	21 860	120.0	192.0	722.0	3 608	3358
ad transmit from		and 0 be	~		ន	1 505	0.00	1 511	3 018	321.325	13 KOK	38 370	007-01	1 630	1 872	2 617	7 148
	i	inifial			38	-2135	4 027	2 141	1033	-54 237	-17 012	202 45	21 037	2, 238	0.700	-7 346	8 006
EEEP Parameters units	nerativ	Dositive			38	-3.177	-5.274	3.182	5.722	-80.688	-23.457	80.828	25.453	4.843	5.544	-9.620	10.438
-	┢	6.132			14	4.072	-5.767	4.064	5.908	-103.431	-25.652	103.226	26.277	4.943	5.128	-10.520	10.776
Fyidd KN	-21.622	27.275			44	-0.315	-0.046	0.307	0.550	-8.014	-0.206	7.795	2.447	-10.919	-12.131	-0.084	1.004
View Kips/ft.		0.766															
Î	a -8.867	11.185															
Ayada III.	È	67.52															
1		4.064															
Aftitume Inter	ŕ	103.23															

36

<u>5.837</u> 5.837 25.966

positive 5.908 26.278

negative -5.767 -25.653

units Kips

parameters F_{st.s}

CUNER systemeters CUNER systemeters Jate: 960 2.440 Jate: EEP Parameters units initial Peak load, F _{pok} Rigis 7.205 7.245 Park load, F _{pok} Rigis 7.244 2.440 Drift at peak load, F _{pok} Rigis 2.440 2.2.450 Drift at peak load, F _{pok} Rigis 2.2.52 2.5.52 Yield load, F _{pok} Rigis 0.2.14 2.7.64 Drift at yield load, A _{pok} mm 32.52 27.641 Drift at yield load, A _{pok} mm 2.7.641 2.7.641 Drift at yield load, A _{pok} mm 10.55 27.641 Drift at yield load, A _{pok} mm 10.55 2.913 Proportional limit, Kiys 2.913 2.913		Effective wall length Date: EEEP Parameters Peak unit load, v_{pack} Drift at copacity, Δ_{pack} Yield unit load, v_{pack} Proportional limit, 0.4 v_{pack} Drift at prop. limit, $\Delta (0.0.4v_{pack}$		š –		wall le	Ħ.	<u>6</u>	cluc test 2.44m									
		Date: <u>Effective wall leng</u> <u>Parameti</u> <u>Peak unit load, v</u> Urifi at capacity. J Vield unit load, v Proportional lim 0.4v _{pat} Drift at yield load, Urith load at failu				ctive wall ler	agth .		2.44m									
489.485.485		ELEP Paramet Peak unit load, v Drift at capacity. J Yield unit load, v Drift at yield load, Proportional lim 0.4v _{pat} Drift at prop. lin d. 00.4v _{pat}			╉	_	appendict of	ave dienlacament	ave le	head	unth ner curla	r curla	cumulaties work	ine morth	- united	cuchic chiffnace	demine	lina
22 . 4 2 . 4 2 . 4 2 .	7.296 32.450 1.280 32.52 32.52 6.214 0.770 0.770 19.55 19.55	Peak unit load, v Driff at capacity. J Yield unit load, v Proportional lim 0.4v _{pat} Drift at prop. lin d.@0.4v _{pat}				initial	in in	+	Kips	KN	Kip-ft.	KNm	Kip-ft.	KNm	Kip/m.	KN/mm	ratio	number
	32.450 1.280 32.52 6.214 0.770 19.55 19.55 2.918	Drift at capacity, <i>i</i> Yield unit load, v Drift at yield load, Proportional lim 0.4v _{pat} Drift at prop. lin $\Delta (0.4v_{pat})$ Urit load at failu		_	0.912		0	ł	0	0		0		0				13
1 8 8 7 4 8 7 .	32.52 6.214 0.770 19.55 2.918	Drift at capacity. A Yield unit load, v Proportional lim 0.4V _{pat} Drift at proop. lim dig0.4V _{pat}			205.51		0.097	3 707	301.1	5.190 6.017	0.000	0.008	0.000	0.008	10.445	2.195	0.006	101
SA a SA .	6.214 27.641 0.770 19.55 2.918	Yield unit load, v Drift at yield load, Proportional lin 0.4v _{pat} Drift at prop. lin $\Delta (0.4v_{pat})$ Unit load at failu				14	198	5.034	1.919	8.535	0.019	0.026	0.101	0.137	9.708	1.700	0.095	1402
នុន្នភ្នុ	27/041 0.770 19.55 2.918	Drift at yield load, Proportional lim 0.4v _{pat} Drift at prop. lin $\Delta @ 0.4v_{pat}$ Unit load at failu		-		21 0	0.403	10.237	3.237	14.398	0.074	0.100	0.238	0.323	7.998	1.401	0.108	2101
- 8 8 7 -	0.770 19.55 2.918	Drift at yield load, Proportional lim 0.4v _{jest} Drift at prop. lin $\Delta @ 0.4v_{\rm rest}$ Unit load at failur		_			0.612	15.551		19.692	0.141	0.191	0.485	0.657	7.193	1.260	0.098	2501
1 8 2 .	2.918	Proportional lim 0.4v _{pat} Drift at prop. lin $\Delta @ 0.4v_{pat}$ Unit load at failu			0.770		0.818	20.780	5.386	23.958	0.217	0.294	0.004	1.226	6.555	1.148	0.093	2900
êz.	016.2	Proportional LILL 0.4V _{peak} Drift at prop. lir ∆@0.4V _{peak} U'mit load at failur		1			027.1	202.00		NC+76	1.046	016.0	06/17	201.4	201.0	100/T	041.0	0075
í e	10 000	Drift at prop. lin ∆@0.4v _{pat} Unit load at failu		÷			6CC-1	115.75		200.82	1 520	2014	102.5	007.5	216.6	0.200	261.0	1002
	0 362	∆@0.4v _{peet} Unit load at failur					002 E	04 728		101 10	1 755	0.370	8 270	C1C 11	1 287	302.0	0100	4101
u uu	9.19	Unit load at failur		÷			3315	84.204		21 002	0.682	0.924	20.668	28.021	1.420	0.249	0.083	4320
lips	5.836			Kip/ft. 0.		47 2		61.883		20.127	0.873	1.184	11.620	15.754	1.863	0.326	0.152	7545
KN	25.960	0.8Upeak	K				3.228	81.980		14.597	0.818	1.109	15.975	21.658	1.019	0.178	0.148	8146
.ei	2.455	Drift at failure. Asses			2.455													
mm	62.36		_	_	62.36													
Kip/in.	8.110	Shear modulus, G	_		8.110													
KN/mm	1.420	(g)U.4F past	- 1		1.420													
KIN-m KN-m	515.5 4.405	Work until tauture per unit leneth	_	Kup-tt./tt. 0. KN-m/m	0.414													
E S	2.676	Unit load @ 32 in	Γ		╞	cycle	Negative stroke	troke	Positive stroke	troke	Negative stroke	stroke	Positive stroke	e stroke	Area.	Area, Kip-in.	Unit loa	Unit load, KN/m
KN.	11.904	(8.13 mm)		÷		\vdash		Kips	.ei	Kips	mm	KN	mm	KN	negative	positive	negative	positive
Kips	3.638	Unit load @ .48 in.		Kips/ft. 0.	0.455		0	0	0	0	•	0	-	0	•	0	0	0
KN	16.184	(12.19 mm)			6.637	1	0.120	-1.290	0.073	1.046	-3.045	-5.740	1.857	4.653	0.077	0.038	-2354	1.908
Kips	5.964	Unit load @ .96 in.		_	0.745	4	0.170	-1.723	0.129	1.387	-4.318	-7.665	3.277	6.170	0.075	0.068	-3.143	2.530
KN	26.526	(24.38 mm)		_		14 6	-0.224	-2.125	0.173	1.713	-5.679	-9.452	4.389	7.619	0.103	0.068	-3.876	3.125
Kips	6.643	Unit load @ 1.6 in.		Kips/ft. 0.			-0.427	-3.653	0.379	2.821	-10.846	-16.247	9.629	12.549	0.588	0.468	-6.663	5.146
RN	29.548	(40.64 mm)	Z	_			-0.638	-5.161	0.587	3.693	-16.200	-22.956	14.902	16.428	0.929	0.676	-9.414	6.737
	3.22	Carl @Vpeak		ö	0.140		-0.842	-6.337	0.794	4.435	-21.394	-28.188	20.165	19.727	1.176	0.842	-11.560	8.090
ſ						32	17171	-7.479	1.390	7.112	-29.741	-33.267	35.303	31.633	2.270	3.441	-13.643	12.973
	initial	tial					-1.691	-6.456	2.069	5.624	-42.94]	-28.717	52.545	25.016	3.621	4.323	-11.777	10.259
units	negative	positive					-2.856	-6.007	2.459	5.722	-72.555	-26.721	62.466	25.450	7.266	2.216	-10.958	10.437
Kips	-6.464 -28.754	5.964 26.528			-		3.914	4308	3.545	5.220	-99.423	-19.163	90.033	23.219	5.456	5.937	-7.859	9.522
Kips/ft.	-0.808	0.746																
KNm	-11.792	10.879																
ji,	-0.733	0.807																
uu.	-18.61	20.49																
ei	7/9/7-	650.7																
	-12.94	6/10																
units	negative		age															
Kips	-7.479		7.296															
KN	-33.269	31.635 32.4	32.452															

Specimen 2b	For total length		Specimen 2b	Per unit	unit length	Specimen	2b	For total length	length									
	CUREE cyclic test	chic test		CUREE cyclic test	yclic test			CUREE cyclic test	clic test									
Effective wall length	Η	2.44m	Effective wall length	96in.	2.44m	Effective wall length	ll length	96in.	2.44m									
Date:	Time:		Date:	Time:		cycle	avg. displacement	acement	рò	load	work per cycle	er cycle	cumulative work	ive work	cyclic	cyclic stiffness	damping	line
EEEP Parameters	units	initial	EEEP Parameters	units	initial	initial	.si	mm	Kips	RN	Kip-ft.	KNm	Kip-ft.	KNim	Kip/in.	KN/mm	ratio	number
Peak load, F _{peak}	KN	6.614 20.420	Peak unit load, v _{peak}	Kip/fi KN/m	0.827	-	0 007	0 2.460	0 1.238	0 2	0 008	0 01	0 008	0 011	12.787	022.2	0.130	107
Theith at mosts load A	, ci	1.112	Drift at conscript A	.ei	1.112	-	0.152	3.865	1.658	7.375	0.014	0.019	0.057	0.078	10.897	1.908	0.106	1401
LULLI OL PEOR LOOU, Apart	mm	28.24	Dutte of coportio, Draft	mm	28.24	14	0.204	5.194	2.064	9.180	0.023	0.031	0.130	0.176	10.095	1.768	0.102	2801
Vield load F	Kips	5.808	Viald unit load w	Kip/ft.	0.726	21	0.407	10.344	3.728	16.583	0.082	0.111	0.288	0.391	9.155	1.603	0.103	4201
Field + monore monore +	KN	25.835	piece and and a second second	KNm	10.595	25	0.613	15.566	4.987	22.184	0.164	0.222	0.568	0.771	8.137	1.425	0.102	2001
Drift at vield load. Auto	,ei	0.602	Drift at vield load. A.t.t.	.ei	0.602	29	0.816	20.716	5.860	26.065	0.256	0.347	1.050	1.423	7.185	1.258	0.102	5801
	mm	15.29		mm	15.29	32	1.220	30.988	6.925	30.800	0.817	1.108	2.104	2.852	5.765	1.009	0.182	6401
Proportional limit,	Kips	2.646	Proportional limit,	Kip/ft.	0.331	35	1.825	46.364	5.843	25.990	0.974	1.320	3.538	4.797	3.191	0.559	0.174	1001
D. P. Pault	KN 4	0.774	0.4V _{pade}	KNW	4.820	38	2.475	62.808	5.194	23.103	0.470	1.913	5.527	7.493	2.123	0.372	0.211	109/
built at prop. tuttt, A@∩ AF		10.4	Louit at prop. muut, A@∩ der		10.2	14	101.5	LYE P0		10/10	0.200	0.020	0100	915.010	0.654.0	2110	201.0	4310
Tellens land ar 0.00	Kips	5.361	Unit load at failure or	Kip/ft.	0.670	;		100110							1000			
Fallure load of U.S. pak	KN	23.845	0.8vpaak	KNm	9.779													
Drift at failure. Assess	.ei	2.480	Drift at failure. Ansee	.ei	2.480													
4	mm	62.98		mm Via Ga	62.98													
Elastic sumess, N _a	Tindry .	717.6	Shear moduuus, G	Kupun.	111.6													
@0.4F peek	KNmm	1.702	(2) U.+F peek	KN/mm	1.702													
Work until failure	Kip-ft.	5.527	Work until faihure per	Kip-ft./ft.	0.691													
	RN III	7.493	und length	KN-mm	3.075	-				1.11					-	1.1.1		1.4
TI 72 (2) 1000	sdry	210.5		Lipsyn.	0/5.0	cycle	Negative stroke	e stroke	FOSITIVE STLOKE	STLOKE	Negauve suoke	e stroke	FOSIDVE SURVE	e stroke	Area	Area, Kip-In.	UBIT JOAG, KIN/M	L, KINIM
(mm cr.s)	N	160.01	(uuu cr.s)	HNN	±5±.0	Initial	ri i	sdizi	ei	sdiry		NN		NN4	Degative	avinsod	avingan	positive
Load @ .48 in.	Kips	4.173	Unit load @ .48 in.	Kips/ft.	0.522		0	0	0	0	0	0	0	0	0	0	0	0
(12.19 mm)	KN	18.560	(12.19 mm)	KNm	7.612	1	-0.097	-1.280	0.097	1.197	-2.461	-5.694	2.459	5.323	0.062	0.058	-2.335	2.183
Load @ .96 in.	Kips	5.921	Unit load @ .96 in.	Kips/ft.	0.740	7	-0.152	-1.669	0.152	1.647	-3.866	-7.426	3.863	7.324	0.082	0.079	-3.045	3.004
(24.38 mm)	KN	26.338	(24.38 mm)	KNhm	10.801	14	-0.202	-2.095	0.207	2.033	-5.141	-9.320	5.248	9.041	0.094	0.100	-3.822	3.708
Load @ 1.6 in.	Kips	6.104	Unit load @ 1.6 in.	Kips/ft.	0.763	21	-0.408	-3.749	0.406	3.707	-10.373	-16.677	10.315	16.490	0.602	0.573	-6.839	6.763
(40.04 mm)	KN	101.12	(40.04 mm)	KNM	11.135	6 7	100.0-	古20.1	0.025	111.5	-15.258	-21.050	C/8.CI	22.755	0.528	0.900	-8.8/5	9.525
Ductility factor, µ		4.30	Carl @Vpeak		0.142	29	-0.791	-5.695	0.840	6.025	-20.089	-25.332	21.344	26.798	1.004	1.199	-10.389	10.990
						32	-1.465	-4.971	1.433	7.534	-37.203	-22.111	36.401	33.509	3.593	4.019	-9.068	13.742
		ini	initial			35	-1.767	-5.056	1.884	6.631	-44.879	-22.487	47.849	29.494	1.515	3.192	-9.222	12.096
EEEP Parameters	\vdash	negative	positive			38	-2.649	-4.695	3.348	4.557	-67.280	-20.884	85.032	20.271	4.300	8.189	-8.564	8.313
F viala	Kips	-5.033	6.583															
L		-22.388	29.282															
Void	Kips/ft.	-0.629	0.823															
	RNH	-9.182	2002															
Δ_{place}	TI MIM	-12.64	0.707															
	,	079 0	2,310															
∆ futbare	un	-67.28	58.68															

average 6.925

positive 7.534

negative -6.316 -28.093

units Kips KN

Ultimate parameters Fsts

ST5

International Constrained international Constrained in	3a Foi	For total length	Specimen	3a	Per unit length	\square	Specimen	3a	For total length	length									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	cut	CEE cyclic test			CUREE cyc				CUREE C	oclic test									
Image Image <th< th=""><th>Tim</th><th>+</th><th></th><th>ngu</th><th>+</th><th></th><th>LILECUVE Wa</th><th>ave dicnl</th><th>scement</th><th>- h</th><th>load</th><th>work n</th><th>er cycle</th><th>cumulati</th><th>ve work</th><th>cvelie s</th><th>tiffness</th><th>damnine</th><th>line</th></th<>	Tim	+		ngu	+		LILECUVE Wa	ave dicnl	scement	- h	load	work n	er cycle	cumulati	ve work	cvelie s	tiffness	damnine	line
	unit		EEEP Paran	┢	units	initial	initial	e.	mm	b—	KN	Kip-ft.	KNm	Kip-ft.	KN·m	Kip/in.	KN/mm	ratio	number
Internetion	Kip		Deak unit load	E	Kip/ft.	1.296		0	0	•	0	.0	0		0				13
		1		-	KN/m	18.916	- •	0.096	2.441	1.535	6.827	0.008	0.011	0.008	0.011	16.536	2.896	0.107	5 2 2
			Drift at capacit	V. Aperle	e	2.120	- :	0.148	SC1.5	2.111	9.589	/10/0	0.025	0.005	0.000	14.40/	2055	501.0	1 0/
	Kin	1			Kin/ft.	1104	1	0.401	10.188	4.343	19.320	0.100	0.135	0.341	0.462	10.828	1.896	0100	2102
	12	Ľ	Yield unit load	L Vyidd	KNH	17.427	25	0.603	15.325	5.845	26.001	0.184	0.250	0.671	0.910	9.687	1.696	0.100	2501
$ \begin{array}{ $					ji	0.885	29	0.808	20.524	7.355	32.716	0.284	0.385	1.222	1.657	9.102	1.594	0.091	2901
	L	Ė	DITIT AT YIERD ION	Md. 2 ₉₆₆₄	mm	22.47	32	1.345	34.172	10.256	45.620	0.967	1.312	2.468	3.346	7.622	1.335	0.134	3201
	Kip		Proportional	limit.	Kip/ft.	0.518	35	1.741	44.210	10.292	45.779	1.607	2.178	4.744	6.432	6.094	1.067	0.173	3502
	12		0.4v _{ent}		KN	7.566	38	2.679	68.042	10.121	45.017	2.675	3.626	8.439	11.441	3.786	0.663	0.187	3802
			Drift at prop.	limit.	ij.	0.384	41	3.835	97.418	7.968	35.440	2.458	3.333	12.369	16.769	2.127	0.372	0.157	4102
		Ē	△@0.4v		mm	9.75	4	3.315	84.204	4.722	21.002	0.682	0.924	20.668	28.021	1.420	0.249	0.083	4320
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Unit load at fai	hure or	Kin/ft.	1.130	47	2.436	61.883	4.525	20.127	0.873	1.184	11.620	15.754	1.863	0.326	0.152	7545
	L	Ē	0.8v _{ent}		KN/m	16.483	50	3.228	81.980	3.282	14.597	0.818	1.109	15.975	21.658	1.019	0.178	0.148	8146
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					ji,	3.327													
	Ļ	Ė	LINIT AL TAURUP,	Aideo	mm	84.51]
		_	Shear modult	to si	Kip/in.	10.824													
		Ŀ.	@0.4F		KN/mm	1.895													
KNIG 76puntilengthKNKNKNIG 77JeffUntilong 311KNMarKNMarKNMarKNMarKNMarKNMarKNMarKNMarKNMarKNMarKNMarKNMarMarKNMarMarKNMarMarMarKNMar <t< td=""><td></td><td></td><td>-</td><td></td><td>Kip-ft./ft.</td><td>1.546</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			-		Kip-ft./ft.	1.546													
Kins 5642 Unitod (0, 31m) Kins 0.453 error Negative stroke Positive stroke Positive stroke Negative stroke		-			KN·m/m	6.877													
KN [613] (613) Klim 6443 inimi Klps ini Klps ini Klp mm KN agaive pointe agaive agaive pointe agaive agaive agaive agaive agaive agaive	Kip		Umit load @		Kips/ft.	0.455	cycle	Negative	e stroke	Positive	e stroke	Negativ	e stroke	Positive	stroke	Area,	Kip-in.	Unit load	l, KN/m
Kips 4.936 Untrload(6.48)in Kipsith 0.016 0	Ŕ		(8.13 mm		KNm	6.643	initial	.si	Kips	.ei	Kips	mm	KN	uuu	KN	negative	positive	negative	positive
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Kip		Umit load @ .	48 in	Kips/ft.	0.616		0	0	•	0	•	0	•	0	-	0	-	0
Kips E.168 Unitload (@.96 in Kipsrft 1011 7 0.164 2.060 0.133 9.161 3.333 9.616 0.089 0.100 3.737 Kips 1010 Unitload (@.16x) Kipsrft 11.01 7.353 9.161 3.333 0.013 3.737 4.735 Kips 14.900 Unitload (@.16x) Kipsrft 1.450 5.448 11.533 9.616 0.089 0.113 4.735 Kips 14.900 Unitload (@.16x) Kipsrft 1.450 5.649 5.448 11.733 1118 0.011 4.735 Kips 14.900 11.01 7.421 0.805 5.639 5.678 5.0741 10.041 <	M	-	(12.19 mm	(international content) (inter	KN	8.985	1	-0.114	-1.546	0.078	1.524	-2.901	-6.876	1.981	6.778	0.088	0.059	-2.820	2.780
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Kip		Unit load @ .	96 in.	Kips/ft.	1.021	-	-0.164	-2.060	0.132	2.162	-4.158	-9.161	3.358	9.616	0.089	0.100	-3.757	3.944
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	R		(24.38 mi		KN/m	14.900	14	-0.214	-2.590	0.183	2.649	-5.448	-11.521	4.641	11.783	0.118	0.121	4.725	4.832
KÑ 4430 (40.64 mm) KÑum 18.436 25 0.607 6.023 0.543 15.428 2.6734 15.222 25.217 1.034 1.026 -10.964 3.77 ζ_{m} (M_{put} 0.160 29 0.811 .7.421 0.805 7.289 26.673 1.372 1.330 -1.3537 -1.350 -1.351 4.3197 35.829 4.014 5.41 -1.715 1 units metal 933 -1.280 -9.712 1.411 10.01 -3.552 4.014 5.461 -1.7715 1 units metal 9031 -7.421 0.865 -5.612 -3.308 20.43 4.014 5.461 -1.7715 1 units metal 9031 10.0194 4.013 5.633 3.582 10.030 -10.363 4.014 5.613 -10.716 1 1.0194 1.0194 1.0194 1.026 -10.813 -10.712 4.61 -17.715 -17.411 1.026	Kin		Unit load @ 1	1	Kins/ft.	1.263	21	-0.410	-4.452	0.392	4.235	-10.414	-19.802	9.962	18.838	0.683	0.721	-8.121	7.725
3.7.7	M		(40.64 mn		KN/m	18.426	25	-0.607	-6.022	0.599	5.669	-15.428	-26.784	15.222	25.217	1.034	1.026	-10.984	10.342
32 -1.280 -9.712 1.411 10.801 -3.515 43.197 35.829 46.014 5.461 -17.715 nuits weistre -9.913 10.964 45.343 4.014 5.461 -17.81 Kupts -89.913 10.1944 6.837 -9.584 2.096 9.887 -50.482 43.979 6.825 7.000 -17.482 KN -30.646 4.5343 4.019 -5.633 3.582 10.303 -5.033 -10.817 5.035 -10.40 5.163 -16.806 -7.461 -7.715 -7.461 -7.462 5.33 -7.00 -7.482 -7.60 -7.482 -7.60 -7.482 -7.60 -7.482 -7.60 -7.482 -7.60 -7.482 -7.60 -7.482 -7.60 -7.482 -7.60 -7.482 -7.60 -7.482 -7.60 -7.482 -7.60 -7.482 -7.60 -7.482 -7.60 -7.482 -7.60 -7.482 -7.60 -7.482 -7.60 -7.482 -7.60 </td <td>1</td> <td>3.77</td> <td>C_{ed} @v_{per}</td> <td></td> <td></td> <td>0.160</td> <td>29</td> <td>-0.812</td> <td>-7.421</td> <td>0.805</td> <td>7.289</td> <td>-20.612</td> <td>-33.008</td> <td>20.437</td> <td>32.423</td> <td>1.372</td> <td>1.330</td> <td>-13.537</td> <td>13.297</td>	1	3.77	C _{ed} @v _{per}			0.160	29	-0.812	-7.421	0.805	7.289	-20.612	-33.008	20.437	32.423	1.372	1.330	-13.537	13.297
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							32	-1.280	-9.712	1.411	10.801	-32.515	-43.197	35.829	48.043	4.014	5.481	-17.715	19.703
units negrifice 33 2.385 -9.213 2.972 11.028 -60.589 -40.061 7.5494 -40.053 3.740 9.163 -16.806 KTps -8.913 10.104		ū	uitial				35	-1.987	-9.584	2.096	9.887	-50.482	-42.628	53.238	43.979	6.825	7.090	-17.482	18.036
Kips 8.913 10.194 41 -4.089 -5.633 3.582 103.03 -103.856 -25.054 90.980 45.827 12.644 6.503 -10.275 1 KNp:nt -10.114 11.39 11.93 13.555 -25.054 90.980 45.827 10.275 10.275 1 KNp:nt -16.129 11.24 15.27 12.644 6.503 -10.275 1 KNp:nt -16.159 12.644 0.563 3.582 10.303 -10.275 1 KNp:nt -16.164 0.563 3.582 10.303 -10.275 -10.275 -10.275 mm -0.804 0.965 -15.02 3.582 -10.275 -10.275 mm -20.42 3.582 10.303 -10.303 -10.275 -10.275 -10.275 mm -3.072 3.582 10.303 -10.303 -10.275 -10.275 -10.275 mm -170.4 0.592 10.303 -10.303 -10.370 </td <td></td> <td>\vdash</td> <td></td> <td></td> <td></td> <td></td> <td>38</td> <td>-2.385</td> <td>-9.213</td> <td>2.972</td> <td>11.028</td> <td>-60.589</td> <td>-40.981</td> <td>75.494</td> <td>49.053</td> <td>3.740</td> <td>9.163</td> <td>-16.806</td> <td>20.117</td>		\vdash					38	-2.385	-9.213	2.972	11.028	-60.589	-40.981	75.494	49.053	3.740	9.163	-16.806	20.117
KN -39.646 45.343 Kupafit. -1.114 1.274 KNm -16.539 18.595 iii -0.840 0.865 iii -3.072 3.582 iii -10.049 arterage iii -3.072 3.582 iii -3.072 3.582 iii -10.058 arterage Kups -9.712 11.038 Kups -9.712 11.038	Kip		10.194				41	-4.089	-5.633	3.582	10.303	-103.856	-25.054	086.06	45.827	12.644	6.503	-10.275	18.794
Kips/ft -1.114 1.274 EX/m -16.259 18.595 in -0.804 0.965 min -2.042 24.51 min -78.04 90.98 min -78.01 90.98 min -78.01 90.98 wints megafive positive VX a.3710 110.03 VX a.3710 10.03	12	Ė																	
KN'm -16.259 18.595 in -0.804 0.965 mm -0.142 2.451 mm -3.072 3.582 mm -78.044 90.98 units negative po.948 VN -3.072 3.582 mm -78.044 90.98 Kips -9.712 11.003 VN -9.106 0.654	Kips																		
in0.804 0.965 mm -20.42 24.51 in3.072 3.582 mm -78.04 90.98 units negative positive VX as 100.65	KN																		
num -20.42 24.51 in -3.072 3.582 num -78.04 90.98 nuits negative positive KNs -9.103 11.035	j.	_	0.965																
in3.072 3.582 mm78.04 90.98 -78.04 90.98 Kups -9.712 11.028 -7.12 11.028	IUI		24.51			-													
mm -78.04 90.98 units negative positive Kups -9.710 11.028 VM -43.710 40.65	ii.		3.582																
units negative positive Kips -9.712 11.028 VN 40.655	IIII	_	90.98																
units negative positive Kips -9.712 11.028 YN -43.100 40.655	ł	ŀ		ſ															
VN .42 100 40 055	ł	t	positive 11 028	Nerage															
			250.05	2012															

1 🗃 🖓	For total length S	Specimen 3b	Per unit length	П	Specimen	3b	For total length	length									
	ffective	Effective wall length	96in.		Effective wall length	llength	96in.	2.44m									
Г	ate:	,	Time:		cycle	avg. displacement	acement	avg. I	load	work per cycle	r cycle	cumulative work	ve work	cyclic s	cyclic stiffness	damping	line
initial EEEF	EEE	EEEP Parameters	units	initial	initial	.si	mm	Kips	KN	Kip-ft.	KN·m	Kip-ft.	KN·m	Kip/in.	KN/mm	ratio	number
	Peak u	Peak unit load. V	Kip/ft.	1.119		0	0	0	0	0	0	0	0				13
		L	KNM	16.335	1	0.098	2.498	1.521	6.765	0.008	0.011	0.008	0.011	15.460	2.707	0.102	197
	Drift at c	Drift at capacity, $\Delta_{\rm neak}$	ij	1335		0.149	3.782	2.085	9.276	0.016	0.022	190.0	0.082	14.005	2.453	0.098	1400
55.9L			nm Vinde	16.66	4 2	0.202	20100	00C71 V	10 555	17000	050.0	0.142	0.192	10.161	1272	0.008	100
	Yield un	Yield unit load, v _{yield}	KN/m	13.755	52	0.614	15.593	5.519	24.550	0.183	0.248	0.653	0.885	8.984	1.573	0.103	2000
				0.700	20	0.817	20.743	6.508	20.350	0.281	0.381	1011	1.615	8.067	1413	0000	5800
	Drift at yie	Drift at yield load, Δ_{pield}	mm	17.71	32	1.335	33.913	8.955	39.832	1.048	1.421	2.497	3.385	6.712	1.175	0.168	6399
3.582 Proporti	Proporti	Proportional limit,	Kip/ft.	0.448	35	1.927	48.933	7.084	31.510	1.190	1.613	4.183	5.672	3.674	0.643	0.166	6669
	0.4	0.4vpat	KN/m	6.534	38	3.043	77.287	6.273	27.902	1.532	2.077	6:359	8.621	2.046	0.358	0.152	7600
	Drift at p	Drift at prop. limit,	ij.	0.332	41	4.078	103.580	6.732	29.945	2.012	2.728	9.208	12.483	1.652	0.289	0.140	8201
	000 	∆@0.4vpmk	mm	8.44	Ŧ	3.239	82.281	3.977	17.688	0.661	0.896	13.774	18.675	1.226	0.215	0.098	4319
7.164 UTUT 10803 3 31 865 0.81		Utilit load at failure of 0 8 v .	KN/m	0.895													
		Just	-E	2.353													
	Drift at fai	Duft at failure, Andres	mm	59.77													
10.779 Shear m	Shear m	Shear modulus, G	Kip/in.	10.779													
	®.	@0.4Fpee	KN/mm	1.888													
6.359 Work unit e. 6.11	Work unit	Work until failure per	Kip-ft./ft. VN-m/m	0.795													
	Unit loa	Unit load @ .32 in.	Kips/ft.	0.435	cycle	Negative stroke	stroke	Positive stroke	stroke	Negative stroke	stroke	Positive stroke	stroke	Area.	Area, Kip-in.	Unit load, KN/m	L, KN/m
	(8.1)	(8.13 mm)	KN/m	6.341	initial	.si	Kips	.ei	Kips	uuu	KN	uuu	KN	negative	positive	negative	positive
4.628 Unit load	Unit load	Unit load @ .48 in.	Kips/ft.	0.579		0	0	0	0	•	0	•	0	•	0	-	0
20.587 (12.1	(12.1	(12.19 mm)	KN/m	8.443	1	-0.099	-1.571	0.097	1.471	-2.520	-6.988	2.476	6.541	0.078	0.072	-2.866	2.683
7.240 Unit lo	Unit lo	Unit load @ .96 in.	Kips/ft.	0.905	7	-0.149	-2.078	0.149	2.093	-3.777	-9.244	3.787	9.308	0.090	0.092	-3.791	3.817
32.202 (24.	đ	(24.38 mm)	KN/m	13.206	14	-0.200	-2.561	0.203	2.578	-5.090	-11.393	5.156	11.465	0.120	0.126	-4.672	4.702
8.117 Unit los	Unit lo:	Unit load @ 1.6 in.	Kips/ft.	1.015	21	-0.408	-4.056	0.413	4.287	-10.358	-18.041	10.495	19.070	0.686	0.721	-7.399	7.821
	£j.	(HU.04 mm)	TINE	0.168	67 02	26C-0-	414.C-	0.040	2.173	10.076	10102	666 CT	016'C7	1 052	1.417	000 LL	970.01
	τ α ς.	12.0		001.0	66	0721	192.0	10.0	0 542	072721-	210 DE	22 552	200.14	0001	2 025	59631	207.07
initial	1				35	1101	100.0-	1001	1001	210-FC-	117-16-	022.04	26 146	4.106	107.5	COP.CT-	14.412
muna moritino	at noričino	_			200	000	100 V	2 1 0 2	1 550	012 22	10100	950 00	109.55	102.2	102.0	0,000	002.21
	positive o o o d				20	2067-	196.4-	01.0	8001 B	91/10/-	+01.64-	005.05	170.00	190.0	160.6	260.6-	55/101
-/.058 8.044 21 20/ 25 709	8-044 25-726				Ŧ	4.110	100.0-	4.040	(.4.5	555:501-	016'07-	107./00	C/ 6775	0.000	164.0	-11.058	52651
	1.00	0,0															
	14.6	2 12															
	0.7	65															
	19.0	8		-													
	2.91	0															
-45.63 73.91	73.	16															

Form No. M410 = © 2011 APA – The Engineered Wood Association = www.apawood.org

average 8.955 39.833

positive 9.543 42.448

цедайие -8.367 -37.219

umits Kips KN

Ultimate parameters Fsts

8'TS

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		For total length CURFE cvdic test	Specimen 4a	Per unit length CURFE cyclic test		Specimen	4a	For total length CUREE codic test	clic test									
	2		Effective wall length	⊣		Effective wal	l length	96in.	2.44m									
Perimeters units minits minit			Date:			cycle	avg. displ	acement		load	work pe	er cycle	cumulat	ive work	cyclic	stiffness	damping	line
		initial	EEEP Parameters		initial	initial	.si	mm	Kips	KN	Kip-ft.	KN·m	Kip-ft.	KN·m	Kip/in.	KN/mm	ratio	number
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		14.932	Peak unit load. V	Kip/ft.	1.867		0	0	0	0	0	0	0	0				13
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	66.418		KNm	27.238	I	0.098	2.483	1.528	6.795	0.008	0.010	0.008	0.010	16.598	2.907	0.098	101
	_	1.722	Drift at capacity. A.	Ē	1.722	-	0.148	3.757	2.179	9.690	0.016	0.021	0.054	0.073	15.124	2.648	0.095	702
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	43.74		mm	43.74	14	0.198	5.020	2.854	12.696	0.027	0.036	0.126	0.171	14.710	2.576	0.092	1401
		12.989	Yield unit load, v	Kip/ft.	1.624	21	0.400	10.152	5.132	22.828	0.102	0.138	0.308	0.418	12.882	2.256	0.095	2100
	_	57.774	end.	KNm	23.693	25	0.597	15.164	7.243	32.219	0.205	0.278	0.671	0.909	12.156	2.129	160'0	2500
		1.040	Drift at viald load A	, E	1.040	29	0.792	20.107	9.062	40.307	0.335	0.454	1.301	1.763	11.457	2.006	0.089	2900
		26.42	Higher the or mark to think	mm	26.42	32	1.386	35.198	13.191	58.673	1.131	1.533	2.747	3.725	9.519	1.667	0.118	3200
	-	5.973	Proportional limit,	Kip/ft.	0.747	35	1.722	43.743	14.932	66.418	2.031	2.753	5.565	7.545	8.666	1.518	0.150	3500
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		26.567	0.4v _{pade}	KNm	10.895	38	2.132	54.155	11.177	49.715	1.796	2.435	8.623	11.690	5.140	006-0	0.136	3796
		0.480	Drift at prop. limit,	j i	0.480	41	3.442	87.427	12.101	53.826	4.168	5.651	101.01	25.896	3.530	0.618	0.192	4104
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		12.18	$\Delta @ 0.4 v_{pack}$	mm	12.18	44	3.315	84.204	4.722	21.002	0.682	0.924	20.668	28.021	1.420	0.249	0.083	4320
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		12.844	Unit load at failure or		1.605	47	2.436	61.883	4.525	20.127	0.873	1.184	11.620	15.754	1.863	0.326	0.152	7545
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		57.128	0.8v _{pat}		23.429	50	3.228	81.980	3.282	14.597	0.818	1.109	15.975	21.658	1.019	0.178	0.148	8146
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2.111	Thit is failure A.	jej	2.111													
		53.63		mm	53.63													
		12.535		Kip/in.	12.535													
	a	2.195		KN/mm	2.195													
		8.623	_	Kip-ft./ft.	1.078													
		11.690		KN-m/m	4.794										,			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		4.234		Kips/it.	0.529	cycle	Negative	e stroke	Positive	e stroke	Negativ	e stroke	Positive	e stroke	Area	Kip-in.	Unit load	, KN/m
6.002 Unit load (@.48 m. Kupsift) 0.750 0 <th0< th=""> <th0< th=""> 0</th0<></th0<>		18.835		KNm	7.724	initial	.si	Kips	.ei	Kips	mm	KN	mm	KN	negative	positive	negative	positive
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		6.002	Unit load @ .48 in.	Kips/ft.	0.750		0	0	0	0	0	0	0	0	•	0	•	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		26.695	(12.19 mm)	KN/m	10.948	1	-0.119	-1.462	0.076	1.593	-3.035	-6.504	1.930	7.085	0.087	0.061	-2.667	2.906
45.507 (24.38 mm) $\mathbb{K}N$ m 18.663 14 -0.215 -2.488 0.110 0.140 -4.538 14.314 Umt load @ 1.6 in. \mathbb{K} Wayth. 1.789 23.77 -10.438 24.87 14.326 0.110 0.140 -4.538 6.3670 (40.64 mm) \mathbb{K} N/m 26.11 2.753 -10.439 -20.860 9.865 24.796 0.914 -5555 2.357 -10.439 -0.616 0.388 5.775 -10.439 -20.569 -24.567 0.110 0.140 -4.535 2.357 -10.450 -3.532 -10.439 -20.860 0.794 -2555 -11.927 -14.77 -732 -12.652 -13.87 -1.265 -14.47 -732 -12.69 -12.662 -35.32 -65.07 -0.14 -1732 -12.69 -12.652 -13.87 -1.732 -12.692 -14.17 -1722 -1.947 -1.772 -1.952 -1.947 -1		10.231	Unit load @ .96 in.	Kips/ft.	1.279	5	-0.165	-1.915	0.131	2.442	-4.181	-8.519	3.332	10.861	0.076	0.111	-3.494	4.454
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	KN	45.507	(24.38 mm)	KNm	18.663	14	-0.215	-2.488	0.181	3.221	-5.453	-11.066	4.587	14.326	0.110	0.140	-4.538	5.875
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		14.314	Unit load @ 1.6 in.	Kips/ft.	1.789	21	-0.411	-4.690	0.388	5.575	-10.439	-20.860	9.865	24.796	0.704	0.914	-8.555	10.169
2.05 C ₄₄ @V _{pak} 0.150 29 -0.800 -8.462 0.733 -37.638 19.898 42.977 1.447 1.730 -15.435 imitial initial 32 -1.387 -1.552 -35.232 -56.208 3.5.64 61.067 6.200 7.029 -25.080 ass -1.655 1.384 13.729 -35.232 -56.278 35.164 61.067 6.200 7.029 -25.080 38 -1.720 -7.934 2.542 14.419 -43.744 -35.292 64.137 0.846 111.200 -14.474 -53.052 62.496 -1.773 -7.934 2.542 14.419 -43.744 -35.292 64.137 0.846 111.200 -14.474 -53.052 62.496 64.137 0.846 111.200 -14.474 -16.67 6.1166 -25.693 -1157 2.5530 -1.4419 -35.292 64.567 64.137 0.846 111.200 -14.474 -1.074 1.076 2.5530 -1.4419 -35.292 64.567 64.137 0.846 111.200 -1.074 1.076 2.5530 -1.4419 -35.292 64.567 64.137		63.670	(40.64 mm)	KNim	26.111	25	-0.608	-6.616	0.586	7.870	-15.441	-29.429	14.887	35.008	1.113	1.329	-12.069	14.357
32 -1.387 -1.2652 1.364 13.729 -55.232 -56.278 35.164 61.067 6.000 7.029 -23.080 negative megative 35 -1.455 -1.405 1.729 -35.232 -56.278 35.164 61.067 6.000 7.029 -23.080 35 -1.645 -1.405 1.772 -7.934 2.542 14.419 -43.744 -35.292 64.137 0.846 11.220 -14.474 -1.197 1.4056 -1.722 -7.934 2.542 14.419 -43.744 -35.292 64.567 64.137 0.846 11.220 -14.474 -53.052 61.466 11.220 -14.419 -43.744 -35.292 64.567 64.137 0.846 11.220 -14.474 -1.074 1.756 -1.0166 -1.722 -7.934 25.529 64.567 64.137 0.846 11.220 -14.474 -1.074 1.075 2.5630 -14.419 -43.744 -35.292 64.567		2.05	Carl @Vpeak		0.150	29	-0.800	-8.462	0.783	9.662	-20.315	-37.638	19.898	42.977	1.447	1.730	-15.435	17.625
initial 35 -1.645 -1.4085 1.799 15.779 -41.793 -6.2650 45.692 70.186 3.453 6.116 -25.693 -11927 14.050 -1.722 -7.934 2.542 14.419 -43.744 -35.202 64.137 0.846 11.220 -14.474 -11927 14.056 -7.934 2.542 14.419 -43.744 -35.202 64.137 0.846 11.220 -14.474 -53.052 0.2.496 -1.722 -7.934 2.542 14.419 -43.744 -35.202 64.137 0.846 11.220 -14.474 -1.074 1.006 -1.074 1.006 -14.474 -25.55 -14.474 -25.55 -14.474 -25.55 -25.55 -24.567 64.137 0.846 11.220 -14.474 -27.29 25.55 -25.55 -25.55 -14.474 -25.52 -25.52 -25.52 -25.52 -25.52 -25.52 -25.52 -25.52 -25.52 -25.55 -25.52 -25.52 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>32</td><td>-1.387</td><td>-12.652</td><td>1.384</td><td>13.729</td><td>-35.232</td><td>-56.278</td><td>35.164</td><td>61.067</td><td>6.200</td><td>7.029</td><td>-23.080</td><td>25.044</td></t<>						32	-1.387	-12.652	1.384	13.729	-35.232	-56.278	35.164	61.067	6.200	7.029	-23.080	25.044
negative positive 38 -1.722 -7.934 2.542 14.419 -43.744 -35.292 64.567 64.137 0.846 11.220 -14.474 -11.907 14.056 -3.744 -35.292 64.567 64.137 0.846 11.220 -14.474 -53.052 63.496 -1.756 -1.1756 -1.1756 -1.1756 -1.1756 -1.1757 25.530 -1.074 1.006 -1.074 1.006 -1.074 1.006 -1.681 2.555 -1.681 2.555 -1.681 2.542 1.4.419 -1.681 2.542 -1.4.419 -1.681 2.542 -1.4.419 -1.681 2.542 -1.4.419 -1.681 2.542 -1.4.419 -1.681 2.542 -1.4.419 -1.681 2.542 -1.4.419 -1.681 2.542 -1.4.419 -1.681 -1.641 -1.641 -1.641 -1.542 -1.4.419 -1.4.419 -1.4.419 -1.4.419 -1.4.419 -1.4.419 -1.4.419 -1.4.419 -1.4.419 -1.4.419 -1.4.4119<		ini.	itial			35	-1.645	-14.085	1.799	15.779	-41.793	-62.650	45.692	70.186	3.453	6.116	-25.693	28.784
-11927 14.050 -53.052 63.496 -1.491 1.756 -1.073 25.630 -1.074 1.006 -27.29 25.55 -1.681 2.542		negative	positive			38	-1.722	-7.934	2.542	14.419	-43.744	-35.292	64.567	64.137	0.846	11.220	-14.474	26.303
-53.052 -1.491 -21.757 -1.074 -27.29 -1.681		-11 027	14.050			1												
-1.491 -21.757 -1.074 -27.29 -1.681	Γ	-53.052	60.496															
-21.757 -21.757 -2.7.29 -1.681		1401	1756															
-1.074		161-16	DS K2D															
-1.0.1		10/17-	2001															
47.77- 1891-		+/0/1-	0001		_													
100.1-		67.17-	0.04															
	4	100.1-																

average 14.932 66.421

positive 15.779 70.190

uegative -14.085 -62.653

units Kips KN

Ultimate parameters $F_{\rm SLS}$

8'TS

Specimen 4b	For total length	\square	Specimen 4b	Per unit length	length	Specimen	4b	For total length	ength									
	EE CM		P.G	CUREE cyclic test	vclic test		1	ŝ	clic test									
ETTECTIVE Wall length	┥	2.4400	Effective wall length	yon.	2.44m	ETTECTIVE WALL JENGTH	1 length	╈	2.4400		-			-	5			
Date:	$\left \right $		Date:	- IIIIe		cycle	avg. displacement	acement	рò	LOAD	WOLK PET CYCLE	cycle	CUMULATIVE WOLK	Ve WOLK	cycaic s	cycac samess	guidurep	ane ,
EEEP Parameters		Initial	EEEP Parameters	units	Inthal	Initial	si	mm	Kips	RN.	Kıp'tt	KN:B	Kıp'tt.	KN'B	Kipvin	KN/mm	ratio	number
Peak load, F _{peak}	Square N	76.670	Peak unit load, v _{peak}	KN/m	CCL.2	-	0 0010	2614	1 017	0 8 5 7 7	0 000	0 013	0 000	0 013	18 704	100.5	0000	a e
	h	2.962		.E	2.962	F	0.153	3.896	2.648	11.780	0.020	0.027	0.075	0.102	17.328	3.034	0.003	104
Drift at peak load, Δ_{peak}	TITI	75.23	Drift at capacity, Δ_{peak}	mm	75.23	14	0.208	5.279	3.346	14.884	0.033	0.044	0.175	0.237	16.120	2.823	0.090	1404
Viold load E		15.871	Viald unit load w	Kip/ft.	1.984	21	0.421	10.687	5.961	26.517	0.127	0.172	0.411	0.557	14.171	2.482	0.097	2103
LIEULIOOU, Cyald	È	70.595	a read that toold, Vyald	KNm	28.951	25	0.628	15.950	8.418	37.445	0.255	0.346	0.855	1.160	13.406	2.348	0.092	2504
Thrift serviced load A	.e	1.150	This weight had A	ġ.	1.150	29	0.835	21.200	10.590	47.104	0.411	0.557	1.631	2.211	12.688	2.222	0.089	2904
PUTTI OF ATEM TOOM, 2004	mm	29.21	אאלם יוספו חובול זוס וווורד	mm	29.21	32	1.451	36.853	15.543	69.136	1.386	1.879	3.400	4.609	10.714	1.876	0.117	3204
Proportional limit,		6.895	Proportional limit,	Kip/ft.	0.862	35	2.057	52.259	16.518	73.471	2.382	3.229	6.724	9.116	8.051	1.410	0.134	3504
0.4F peak	KN	30.668	0.4vpauk	KNim	12.577	38	2.962	75.235		76.670	4.342	5.887	12.563	17.032	5.819	1.019	0.162	3804
Drift at prop. limit,	ji	0.499	Drift at prop. limit,	į	0.499	41	3.442	87.427		53.826	4.168	5.651	101.01	25.896	3.530	0.618	0.192	4104
$\Delta @0.4F_{put}$		12.69	$\Delta @ 0.4 v_{purk}$	mm	12.69	44	3.315	84.204		21.002	0.682	0.924	20.668	28.021	1.420	0.249	0.083	4320
Failure load or 0.8F _{peak}	Kips	14.311 63.653	Unit load at failure or 0.8v	Kipifi. KNim	1.789	47	2.436	61.883 81 080	4.525	20.127 14 507	0.873	1.184	11.620	15.754 21.658	1.863	0.326	0.152	7545 8146
	T	2 382	and and	ų	3 286	2												2
Drift at failure, Δ_{fithms}	Ľ	83.51 83.51	Drift at failure, Δ_{fabres}	mm	83.51													
Elastic stiffness, K.		13.805	Shear modulus. G	Kin/in.	13.805													
@0.4F		2.417	@0.4Fpee	KN/mm	2.417													
	_	101.01	Work until failure per	Kip-ft./ft.	2.388	_												
W ODX UNDER FAILURE		25.896	unit length	KN-m/m	10.620													
Load @ .32 in.	Kips	4.724	Unit load @ .32 in.	Kips/ft.	0.590	cycle	Negative stroke	stroke	Positive stroke	stroke	Negative stroke	stroke	Positive stroke	stroke	Area, 1	Area, Kip-in.	Unit load, KN/m	l, KN/m
(8.13 mm)		21.010	(8.13 mm)	KNim	8.616	initial	.si	Kips	.ei	Kips	mm	KN	mm	KN	negative	positive	negative	positive
Load @ .48 in.		6.664	Unit load @ .48 in.	Kips/ft.	0.833		0	0	0	0	0	0	0	0	•	0	0	0
(12.19 mm)	KN	29.642	(12.19 mm)	KNim	12.156	1	-0.108	-1.656	0.098	2.178	-2.738	-7.368	2.489	9.686	0.089	0.107	-3.022	3.972
Load @ .96 in.	Kips	11.597	Unit load @ .96 in.	Kips/ft.	1.450	7	-0.157	-2.324	0.150	2.973	-3.993	-10.335	3.800	13.225	0.098	0.133	-4.239	5.424
(24.38 mm)		51.585	(24.38 mm)	KNh	21.155	14	-0.210	-3.004	0.206	3.689	-5.339	-13.360	5.220	16.409	0.141	0.186	-5.479	6.729
Load @ 1.6 in.	Kips	15.815	Unit load @ 1.6 in.	Kips/ft.	1.977	21	-0.422	-5.650	0.419	6.273	-10.719	-25.130	10.655	27.904	0.916	1.066	-10.306	11.443
(40.04 mm)	+	145.01	(+0.04 mm)	HNH H	002.82	67 5	/70'0-	-210.5	670.0	S./02	166.01-	200.00-	606 CT	C84.86	204-1	5001	C7/1+1-	886.CT
Ductury factor, µ		2.80	Seq @Vpeek		0.102	67	-0.850	815.01-	0.855	10.802	-21.257	C68.C4-	201.12	48.515	176.1	7007	-18.822	518.61
						32	-1.461	-15.348	1.440	15.739	-37.120	-68.266	36.586	70.006	8.024	8.076	-27.996	28.710
	_	initial	ial			35	-2.123	-15.592	1.992	17.444	-53.919	-69.351	50.599	77.590	10.232	9.153	-28.441	31.820
EEEP Parameters		negative	positive			38	-2.953	-16.415	2.971	18.059	-74.999	-73.015	75.471	80.324	13.281	17.382	-29.944	32.941
Freedom	Kips	-15.162	16.580			41	-3.490	-8.713	3.394	15.489	-88.638	-38.757	86.215	68.894	6.747	7.095	-15.894	28.254
Į		-07.440	057.67															
Vysidd	KN/m	C68/1-	2.075															
		-1.154	1.146															
- April 1		-29.30	29.11															
∆ futbare	TI MUM	-5.182	5.594 86.73															
		10.00-	20.00															

average 17.237 76.674

positive 18.059 80.328

negative -16.415 -73.019

units Kips KN

ltimate parameters Fsts

575

			line	number	9 S	8	467	935	1401	1667	1934	2134	2334	2534	2734	4320	7545 8146						(N/m	positive	0	2.548	5.329	6.371	10.183	201.51	00001	5/0.77	4/0.07	27.059	14.119]	
			damping	ratio n		0.118	0.099	0.110	0.122	0.109	0.103	0.131	0.133	0.178	0.193	0.083	0.152 0.148						Unit load, KN/m	negative p	0	-2.948	-5.011		-9.642						-25.741					
				KN/mm		4.125	3.249	2.875	2.268	2.019	1 845	1.484	1 228	0.935	0.676	0.249	0.326 0.178						.u.	positive n		0.042	0.206		0.959					- 1440						
			cyclic stiffuess	Kip/in. R		140.52	18.550	16.418	12.951	11.532	10.536	8.475	7.014	5.341	3.862	1.420	1.863						Area, Kip-in.	negative p		0.055	0.179	0.182	0.920	1.298	1.001	0.582		9.038						
			work	KN·m 1		800.0					2.303	4.670	8 774	16.292	25.992	28.021	15.754 21.658							KN	0	6.213	12.995	15.535	24.831	55.54L	+00.04	C87.CC	8/ 0.00	65.981	58.811					
			cumulative work	Kip-ft.		0.000	0.079	0.195	0.468	0.959	1.765	3.445	6.471	12.017			11.620						Positive stroke	mm		1.516	3.942								96.134					
			ycle	KN·m	0	0.008	0.030	0.055	0.197	0.361	0.560	1753	2.026	5.597	6.668	0.924	1.184						roke	KN	0	-7.188	-12.218	-14.666	-23.510	-51.789					-62.768					
			work per cycle	Kip-ft.	0												0.873 0.818						Negative stroke	mm		-1.732			-10.792						-84.737 -4					
			load	KN	0	10/.0	12.607	15.100	24.171	32.665	30.044	56.236	65.642	68.178	60.790	21.002	20.127 14.597						troke	Kips	0	1397	2.922		5.583						13.222					
length	clic test	2.44m	avg. lo	Kips	0	00001	2.834										4.525						Positive stroke	'n	0	0.060	0.155				200.0	0001	401.2	3.095						
For total length	CUREE cyclic test	96in.	lacement	mm	0	1.024	3.880	5.257	10.663	16.173	21.648	37,899	53,444	73.431	90.435	84.204	61.883 81.980						e stroke	Kips	0	-1.616	-2.747	-3.297	-5.286	147	140.0-	/ 58.71-	777°CI-	-15.822	-14.112					
4d		ll length	avg. displacement	, ii	0	0.004	0.153	0.207	0.420	0.637	0.852	1.492	2,104	2.891	3.560	3.315	2.436 3.228						Negative stroke	.ei	0	-0.068	-0.150	-0.211	-0.425	-0.054	C+9.U-	084-T-	+017-	-2.687	-3.336					
Specimen		Effective wall length	cycle	initial		-	4	14	21	25	29	32	35	38	41	44	47 50						cycle	initial		1	1	14	21	67 92	5	25	55	38	41					
П		2.44m		initial	1.916	2/.900	2.891	73.43	1.723	25.141	1.120	28.46	0.766	11.184	0.498	12.66	1.708 24.930	3.560	90.44	12.359 2 164	2 306	10.660	0.560	8.171	0.745	10.879	1.200	17.515	1.627	23.749	9/1.0								_	
Per uni	CUREE cyclic test	96in.	Time:	units	Kip/ft.	KNm	ġ	mm	Kip/ft.	KNm	ji,	mm	Kin/ft.	KN	ji I	mm	Kip/fi. KN/m	.ej	mm	Kip/in. KN/mm	Kin-fi /ft	KN-m/m	Kips/ft.	KNm	Kips/ft.	KNim	Kips/ft.	KNm	Kips/ft.	KNm										
4d		all length		EEEP Parameters	Peak unit load, v _{eek}	l	Drift at canacity A	and former	Viald mit load w	TORU: Vyield		Drift at yield load, Δ_{yield}	Pronortional limit.	0.4v	Drift at prop. limit.	△②0.4vpmk	Unit load at failure or 0.8v	Drift at failure. Asses		Shear modulus, G @0.4F	Work until failure ner	unit length	Unit load @ .32 in.	(8.13 mm)	Unit load @ .48 in.	(12.19 mm)	Unit load @ .96 in.	(24.38 mm)	Unit load @ 1.6 in.	(40.04 mm)	Seq (UVper)	_								
Specimen		Effective wall length	Date:	EEEP P	Peak unit		Drift at car		Viald unit			Drift at yiel	Pronortic	4.0	Drift at p	A@0.	Umit load a 0.84	Drift at fai		Shear m	Work until	unit l	Unit load	(8.13	Unit load	(12.1)	Unit load	(24.3)	Unit load	(40.0	y) bes		Ital	positive	13.366	59.453	1.671	24.582	26.04	3.785
For total length	CUREE cyclic test	2.44m		initial	15.328	8/1.80	2.891	73.43	13.782	61.304	1.120	28.46	6.131	27.271	0.498	12.66	13.667 60.790	3.560	90.44	2 164	10 172	25.992	4.479	19.924	5.964	26.526	9.602	42.708	13.019	57.910	77.0			negative	-14.199	-63.155	-1.775	A101	-30.88	-3.336
For tot.	CUREE	96in.	Time:	units	Kips	NN NN	,E	mm	Kips	KN			Kins	KN	,ii	mm	Kips KN	.H	unu	Kip/in. KN/mm	Kin-fi	KN m	Kips	KN	Kips	KN	Kips	KN	Kips	KN				units	Kips	KN	Kips/ft.	RIVIN ti	um mu	ij.
4d		all length		EEEP Parameters	Peak load, F _{reak}	L	Drift at neak load. A	Title instance on	Viald load E	ucout, E yield		Drift at yield load, Δ_{yield}	Pronortional limit.	0.4F	Drift at prop. limit.	$\Delta @0.4F_{park}$	Failure load or 0.8Fpeet	Drift at failure. Assess		Elastic stiffness, K, @0.4F	Theat a	Work until failure	Load @ .32 in.	(8.13 mm)	Load @ .48 in.	(12.19 mm)	Load @ .96 in.	(24.38 mm)	Load @ 1.6 in.	(40.04 mm)	y Idealor, p			EEEP Parameters	Fairs	-	Voidd	Į	A _{pinte}	Acce
Specimen		Effective wall length	Date:	EEEP P	Peak lo		Drift at new		Viald lo	YE DON'T		Drift at yiel	Pronortie	0.4	Drift at p.	∆@0.	Failure lost	Drift at fai		Elastic st	i D	Work un	Load @	(8.13	Load @	(12.1)	Load @	(24.3)	Load @	(40.0	Ducturity Include,			EEEP P	н		2	-	٩	46

average 15.328 68.182

positive 14.834 65.984

negative -15.822 -70.379

umits Kips KN

 $F_{\rm SLS}$

8'IS

Ultimate parameters

Specimen 5b	For total length	П	Specimen 5b	Per unit length	length	Specimen	5b	For total length	ength									
Effective well length	CUKEE Cyclic test 0.6in 2.44m		Ffective well length	CUKEE Cyclic test 06in 2.44m	yclic test 2 44m	Tffactive well length	lanath	CUREE CYCLIC TEST 06in 2.44m	2 AAm									
Date:	Time:		Date:	Tine:	m++-7	cycle	ave. displacement		نيو 🗕	load	work per cycle	r cvcle	cumulative work	ve work	cvclic s	cyclic stiffness	damping	line
EEEP Parameters	units	initial	EEEP Parameters	units	initial	initial	, si	mm	Kips	KN	Kip-ft.	KN·m	Kip-ft.	KN·m	Kip/in.	KN/mm	ratio	number
Peak load, F _{seek}	Kips	13.486	Peak unit load, v _{eak}	Kip/ft.	1.686		0	0	0	0		0		0 0				£1
	WN #	386.60		RNH F	24.001	- •	101.0	11.57	1 404	900.0	0.008	110.0	0.008	110.0	12.517	/51.2	611.0	201
Drift at peak load, Δ_{peak}	THE STATE	07.00	Drift at capacity, Δ_{peak}	H .	00.00	1	001.0	5 200	060.1	0 216	CT0.0	07070	100.0	0.173	10.015	1 754	010	140
	Kips	11.789		Kio/ft.	1.474	71	0.424	10.766	3.512	15.622	0.081	0110	0.286	0.388	8.282	1.450	0.104	2103
Yield Joad, Fyield	KN	52.436	Y read what load, V _{yield}	KNm	21.504	25	0.636	16.166	4.821	21.446	0.151	0.205	0.555	0.753	7.580	1327	0.094	2502
. and strained	.e	1.615	Park Manual Product		1.615	29	0.853	21.667	6.046	26.891	0.240	0.325	1.019	1.382	7.089	1.241	0.089	2902
L'ITIT AT YTELO JOAG, 29664	um	41.03	LUTTE AT YTELD 1080. Ayes	mm	41.03	32	1.499	38.086	9.156	40.725	0.785	1.064	2.035	2.759	6.108	1.070	0.109	3202
Proportional limit,	Kips	5.395	Proportional limit,	Kip/ft.	0.674	35	2.134	54.193	11.198	49.811	1.402	1.901	3.995	5.416	5.249	0.919	0.112	3502
0.4F peak	KN	23.995	0.4vpaak	KNm	9.840	38	3.107	78.910	13.167	58.567	2.892	3.920	7.841	10.631	4.238	0.742	0.135	3803
Drift at prop. limit,	ji,	0.739	Drift at prop. limit,	į	0.739	41	3.794	96.356	13.296	59.139	3.790	5.139	13.266	17.985	3.527	0.618	0.143	4103
$\Delta @0.4F_{put}$	uuu	18.77	$\Delta @ 0.4 v_{pusk}$	mm	18.77	44	3.315	84.204	4.722	21.002	0.682	0.924	20.668	28.021	1.420	0.249	0.083	4320
Failure load or 0.8Fpeet	Kips KN	13.296 59.139	Unit load at failure or 0.8v	Riph. RNH	1.662 24.253	48	2.436 3.228	61.883 81.980	4.525 3.282	20.127 14.597	0.873 0.818	1.184	11.620	15.754 21.658	1.863	0.326	0.152 0.148	7545 8146
Deift at failure A	,đ	3.794	Defth at failure Are	.ei	3.794													
	um	96.36		mm	96.36													
Elastic stiffness, K.	Kip/in.	7.331	Shear modulus, G	Kip/in.	7.331													
@0.4Fpeec	KN/mm	1.284	@0.4Fpee	KN/mm	1.284													
Work until faihue	KNin KNin	13.266 17.985	Work until failure per unit length	Kip-ft./ft. KN-m/m	1.658													
Load @ .32 in.	Kips	2.826	Unit load @ 32 in.	Kips/ft.	0.353	cycle	Negative stroke	stroke	Positive stroke	stroke	Negative stroke	stroke	Positive stroke	stroke	Area,	Area, Kip-in.	Unit load, KN/m	d, KN/m
(8.13 mm)	KN	12.572	(8.13 mm)	KNm	5.156	initial	.si	Kips	.ei	Kips	mm	KN	uuu	KN	negative	positive	negative	positive
Load @ .48 in.	Kips	3.857	Unit load @ .48 in.	Kips/ft.	0.482		0	0	0	0	•	0	•	0	•	0	-	0
(12.19 mm)	KN	17.157	(12.19 mm)	KN/m	7.036	1	-0.112	-1.382	0.091	1117	-2.847	-6.147	2.306	4.970	0.077	0.051	-2.521	2.038
Load @ .96 in.	Kips	6.562	Unit load @ .96 in.	Kips/ft.	0.820	7	-0.166	-1.862	0.147	1.529	4.204	-8.283	3.736	6.803	0.087	0.075	-3.397	2.790
(24.38 mm)	KN	29.187	(24.38 mm)	KN/m	11.970	14	-0.219	-2.277	0.199	1.912	-5.550	-10.128	5:055	8.505	0.110	0.089	-4.153	3.488
Load @ 1.6 in.	Kips	9.478	Unit load @ 1.6 in.	Kips/ft.	1.185	21	-0.429	-3.699	0.419	3.325	-10.886	-16.454	10.645	14.789	0.628	0.576	-6.748	6.065
(40.64 mm)	KN	42.157	(40.64 mm)	KNim	17.289	25	-0.630	-5.024	0.643	4.619	-15.997	-22.345	16.335	20.546	0.878	0.890	-9.164	8.426
Ductility factor, µ		2.35	Carl @Vpark		0.139	29	-0.849	-6.296	0.857	5.795	-21.562	-28.005	21.773	25.777	1.240	1.115	-11.485	10.571
						32	-1.490	-9.586	1.509	8.725	-37.841	-42.640	38.331	38.809	5.090	4.733	-17.487	15.916
		initial	tial			35	-2.134	-11.507	2.134	10.890	-54.196	-51.185	54.191	48.437	6.791	6.124	-20.991	19.864
EEEP Parameters	units	negative	positive		_	38	-3.117	-13.404	3.096	12.930	-79.169	-59.622	78.651	57.512	12.247	11.469	-24.451	23.586
Fyield	Kips	-11.685	11.892			41	-3.453	-13.023	4.134	13.568	-87.709	-57.926	105.004	60.353	4.442	13.746	-23.756	24.751
	Mine (4	14610-	1.40.70															
Vyidd	KN/m	-21.315	21.603															
A	,ei	-1.499	1.732															
-	uu ,	-38.08	43.98															
∆ fitines	EI SI	5:435 17 70	4.154 105.00															
		17.70-	00.001															

average 13.486 59.991

positive 13.568 60.356

negative -13.404 -59.625

units Kips KN

 $F_{\rm SLS}$

S. TS

Ultimate parameters

average 11.682 51.962

positive 12.531 55.740

negative -10.832 -48.184

units Kips KN

Ultimate parameters \mathbb{F}_{sus}

S. TS

8	CUREE cvclic test	obcomen ou	CUREE cvclic test				CUREE cvclic test	clic test									
96in.	2.44m	Effective wall length	96in.		Effective wall length	l length	96in.	2.44m									
Time:		Date:	Time:		cycle	avg. displacement	lacement	avg.	load	work per cycle	er cycle	cumulative work	ive work	cyclic	cyclic stiffness	damping	line
units	initial	EEEP Parameters	units	initial	initial	.si	mm	Kips	N	Kip-ft.	KN·m	Kip-ft.	KN·m	Kip/in.	KN/mm	ratio	number
Kips	11.780	Peak unit load, v _{peek}	Kip/fi.	1.472	-	0 0.00	0 660	0 000	0 557 5	0 00	0 000	0 00	0 00 0	020 020	001.9	0110	ញ ភ្ន
i i	2.372		ii.	2.372		0.113	2.861	2.780	12.367	0.015	0.020	0.043	0.058	24.543	4.298	0.001	\$70
uuu	60.26	Duff at capacity, Δ_{peak}	mm	60.26	14	0.152	3.870	3.513	15.627	0.025	0.034	0.120	0.163	22.927	4.015	0.088	1744
Kips	10.678	Vield unit load. v	Kip/ft.	1.335	21	0.321	8.147	5.974	26.572	960.0	0.130	0.301	0.407	18.547	3.248	0.095	2618
ΚN	47.496	204K.	KN/m	19.478	25	0.503	12.769	7.862	34.968	0.202	0.274	0.644	0.873	15.588	2.730	0.097	3118
.E	0.533	Drift se viald load A	į	0.533	29	0.688	17.480	9.201	40.926	0.336	0.456	1.257	1.704	13.335	2.335	0.101	3618
mm	13.53	אאלה יושמו אובול וש וווות	mm	13.53	32	1.065	27.050	10.296	45.798	1.151	1.560	2.705	3.667	9.976	1.747	0.203	3993
Kips	4.712	Proportional limit,	Kip/ft.	0.589	35	1.905	48.377	11.286	50.202	1.532	2.077	4.883	6.620	5.914	1.036	0.136	4368
KN	20.958	0.4vpat	KN/m	8.595	38	2.496	63.401	11.948	53.146	2.711	3.676	8.591	11.647	4.833	0.846	0.170	4743
.ei	0.235	Drift at prop. limit,	,ei	0.235	41	3.639	92.434	11.246	50.024	3.181	4.313	13.279	18.002	3.103	0.543	0.149	5118
mm	5.96	$\Delta @ 0.4 v_{pusk}$	mm	5.96	44	0.332	8.430	0.401	1.784	0.019	0.026	19.974	27.079	1.026	0.180	0.217	\$806
Kips	11.246	Unit load at failure or 0 8	Kipfi.	1.406	41	2.436	61.883 81 080	4.525	20.127	0.873	1.184	11.620	15.754 21.658	1.863	0.326	0.152	7545
i e	3 630	o.ovpaak	in in	3 630	00		000.00	202.0	100010	010.0	20171		000.15	610.1	017.0		0110
1 11	92.43	Drift at failure, Δ_{fithms}	: aa	92.43													
Kip/in.	20.019	Shear modulus, G	Kip/in.	20.019													
KN/mm	3.506	@0.4Fpac	KN/mm	3.506													
Kip-ft.	13.279	Work until failure per	Kip-ft./ft.	1.660													
Kins	5.922	um rengm Unit load @ .32 in.	Kins/ft.	0.740	cvcle	Negative stroke	e stroke	Positive	Positive stroke	Negative stroke	stroke	Positive stroke	e stroke	Area.	Area. Kio-in.	Unit loa	Unit load. KN/m
- NA	26.343	(8.13 mm)	KNm	10.803	initial	e.	Kips	.ei	Kips	mm	KN	uu	KN	negative	positive	negative	positive
Kips	7.615	Unit load @ .48 in.	Kips/ft.	0.952		0	0	•	0	0	0		•	-	0	0	0
M	33.870	(12.19 mm)	KNm	13.890	1	-0.034	-0.757	0.017	0.922	-0.874	-3.368	0.429	4.099	0.013	0.008	-1.381	1.681
Kips	9.636	Unit load @ .96 in.	Kips/ft.	1.205	7	-0.108	-2.292	0.117	3.269	-2.741	-10.196	2.982	14.538	0.112	0.211	-4.181	5.962
M	42.861	(24.38 mm)	KNim	17.578	14	-0.144	-2.961	0.161	4.066	-3.645	-13.169	4.094	18.086	0.094	0.161	-5.401	7.417
Kips	10.583	Unit load @ 1.6 in.	Kips/ft.	1.323	21	-0.302	-5.197	0.339	6.751	-7.681	-23.115	8.613	30.029	0.648	0.962	-9.480	12.315
N.	47.073	(40.64 mm)	KN/m	19.305	25	-0.470	-6.960	0.535	8.763	-11.938	-30.958	13.599	38.979	1.019	1.523	-12.696	15.985
	6.83	Cara @Vpeak		0.153	29	-0.637	-8.190	0.740	10.211	-16.167	-36.431	18.793	45.420	1.261	1.940	-14.941	18.627
					32	-1.216	-9.502	1.412	10.635	-30.894	-42.263	35.865	47.304	5.129	7.005	-17.332	19.400
	ini	initial			35	-1.827	-10.258	1.982	12.314	-46.416	-45.629	50.338	54.774	6.038	6.538	-18.713	22.463
units	negative	positive			38	-2.909	-9.894	2.917	13.301	-73.894	-44.008	74.097	59.162	10.900	11.980	-18.048	24.263
Kips	-9.618	11.738			41	-3.738	706.6-	3.540	12.586	-94.940	-44.068	89.929	55.980	8.204	8.067	-18.073	22.958
N	-42.781	52.211															
Kips/ft.	-1.202	1.467															
KNH	-17.545	21.412															
il M	-0.527	0.539															
.e	-3.738	3.540															
	20.00	00.00															

Evaluation of Force Transfer Around Openings – Experimental and Analytical Findings

46

Form No. M410 = © 2011 APA – The Engineered Wood Association = www.apawood.org

average 11.948 53.149

positive 13.301 59.165

negative -10.596 -47.132

units Kips KN

Ultimate parameters Fsts

8'TS

Specimen 6b	For total length	Γ	Specimen 6b	Per unit length	length	Specimen	6b	For total length	length									
	ΩE cy			CUREE cyclic test	yclic test			CUREE cyclic test	clic test									
Effective wall length	_	2.44m	Effective wall length	96in.	2.44 m	Effective wall length	ll length	96in.	2.44m									
Date:	Time:		Date:	Time:		cycle	avg. displacement	acement	ьò	load	work per cycle	r cycle	cumulative work	e work	cyclic stiffuess	iffuess	damping	line
EEEP Parameters	units	initial	EEEP Parameters	units	initial	initial	.si	mm	Kips	KN	Kip-ft.	KN·m	Kip-ft.	KN·m	Kip/in.	KN/mm	ratio	number
Peak load, F _{peak}	Kips	13.582	Peak unit load, v _{peak}	Kip/fi.	1.698	-	0 000	1107	0	1200	0 0	0 017	0 00	0 0	30.560	6 3 6 7	0.004	13 104
	in the	100		in the second	100 0	• •	0.130	2 527	0C1-0	16 200	0.004	0.012	0.000	2010	124	4757	0.088	1300
Drift at peak load, Δ_{peak}	Torn	75.47	Drift at capacity. Δ_{peak}	mm	75.47	14	0.185	4.603	4.710	20.992	0.030	0.052	0.216	0.203	25.547	4.474	0.085	2799
	Kips	12.334		Kip/ft.	1.542	21	0.364	9.251	7.723	34.351	0.134	0.182	0.492	0.667	21.207	3.714	0.091	4198
Y 1610 10801, Fyidd	KN	54.860	Y IEEG WINT JORG, Vyield	KN/m	22.499	25	0.544	13.825	9.830	43.723	0.292	0.396	1.013	1.373	18.067	3.164	0.104	4998
This with the second	ij.	0.516	This section for the section of the	.ei	0.516	29	0.754	19.158	10.799	48.033	0.477	0.647	1.918	2.601	14.371	2.517	0.111	5798
LUTT at yteld 1080. 2964	mm	13.11	LUTTE AT YTELD JOAD, AyAM	mm	13.11	32	1.257	31.935	11.677	51.938	1.451	1.967	3.811	5.166	9.287	1.626	0.189	6398
Proportional limit,	Kips	5.433	Proportional limit,	Kip/ft.	0.679	35	1.992	50.601	12.838	57.103	1.890	2.562	6.623	8.979	6.454	1.130	0.141	8008
0.4F pauk		24.165	0.4vpauk	KN/m	9.910	38	2.971	75.474	13.582	60.412	3.520	4.773	11.486	15.572	4.586	0.803	0.166	7599
Drift at prop. limit,	,E	0.227	Drift at prop. limit,	.ei	0.227	41	3.614	91.788	12.186	54.205	4.515	6.121	18.138	24.591	3.358	0.588	0.193	8199
$\Delta @0.4F_{put}$	mm	5.77	$\Delta @ 0.4 v_{pack}$	шш	5.77	44	0.332	8.430	0.401	1.784	0.019	0.026	19.974	27.079	1.026	0.180	0.217	8806
Failure load or 0.8Fpeak	Kups	10.866	Unit load at failure or 0.8v	Kipifi. KNim	1.358	44	3.228	61.883 81.980	4.525	20.127 14.597	0.873 0.818	1.184	11.620	15.754 21.658	1.019	0.326	0.152 0.148	7545 8146
		3.261		.ei	3.261	2												
Drift at radiure, Δ_{febuse}	mm	\$2.82	Drift at radiute, Δ_{fichns}	mm	\$2.82													
Elastic stiffness, K.	Kip/in.	23.900	ۍ ن	Kip/in.	23.900													
@0.4Fpeek		4.185	-	KN/mm	4.185													
Work until faihure	Kip-fi. KN-m	19.974 27.079	Work until faihure per unit leneth	Kip-fi./fi. KN-m/m	2.497													
Load @ .32 in.	┢	6.975	.H	Kips/ft.	0.872	cycle	Negative stroke	e stroke	Positive stroke	stroke	Negative stroke	stroke	Positive stroke	stroke	Area, Kip-in.	<ip-in.< th=""><th>Unit load, KN/m</th><th>KN/m</th></ip-in.<>	Unit load, KN/m	KN/m
(8.13 mm)	Ē	31.023		KN/m	12.723	initial	.si	Kips	.ei	Kips	uuu	KN	um	KN	negative	positive	negative	positive
Load @ .48 in.	Kips	9.086	Unit load @ .48 in.	Kips/ft.	1.136		0	0	0	0	0	0	0	0	•	0	0	0
(12.19 mm)		40.414	(12.19 mm)	KN/m	16.574	1	-0.092	-2.829	0.088	2.675	-2.347	-12.585	2.228	11.897	0.131	0.117	-5.161	4.879
Load @ .96 in.	Kips	11.132	Unit load @ .96 in.	Kips/ft.	1.392	7	-0.136	-3.766	0.142	3.788	-3.459	-16.750	3.614	16.849	0.144	0.176	-6.869	6.910
(24.38 mm)		49.516	(24.38 mm)	KN/m	20.307	14	-0.180	-4.605	0.190	4.834	-4.569	-20.481	4.816	21.503	0.183	0.204	-8.400	8.819
Load @ 1.6 in.	Kips	12.256	Unit load @ 1.6 in.	Kips/ft.	1.532	21	-0.338	-7.187	0.390	8.259	-8.598	-31.967	9.903	36.735	0.935	1311	-13.110	15.065
(40.04 mm)	NN	110.40	(40.04 mm)	RNH	865.55	6 7	000.0-	/91.6-	580.0	10.475	CF8.51-	108.01	14.800	10.062	605.1	1.808	20/01-	19.104
L'UCULITY EACTOF, M		(5.0	Tool (G ^W peak		001.0	67	-0.085	107-01-	079.0	0.65.11	245.11-	0/5.0+-	206.07	060.00	1.119	6007	600.21-	20.785
						32	-1.256	-10.905	1.258	12.449	-31.913	-48.504	31.958	55.372	6.051	5.159	-19.892	22.708
	+	initial	tial			35	-1.867	-12.334	2.117	13.342	-47.424	-54.861	53.777	59.345	7.096	11.077	-22.499	24.338
EEEP Parameters	┪	negative	positive			38	-2.728	-15.020	5.214	14.158	667.60-	046.//6-	81.048	C88.70	07.6°01	///0.CT	-25.701	68/
Fyield	Kips	-11.523	13.144			4	-3.253	-10.455	3.974	13.918	-82.624	-46.504	100.952	61.906	6.159	10.661	120.01-0	25.388
		007-10-	C04:90			4	617-0-	/01/0-	+++-O	C 60'N	5/00-	C/4/0-	227.11	C60.C	070.01-	C6/.C7-	C6T-0-	607-1
Vyidd	KNim	000 10-	23 077															
		-0.480	0.552															
-press		-12.20	14.03															
∆ futbare	e	-3.243	3.974															
	11111	10.20-	CC-101															

average 13.582 60.415

positive 14.138 62.888

negative -13.026 -57.943

KN KN

75

F_{sus}

Specimen 7a	For total length		Specimen	7a	Per unit length	ength	Specimen	7а	For total length	ength									
	CUREE cyclic test				CUREE cyclic test	clic test			CUREE cyclic test	clic test									
Effective wall length	96in.	2.44m	Effective wall length	length	96in.	2.44m	Effective wall length	ll length	96in.							5			
Date:	The:	Т	Date:		Tille:		cycle	avg. displacement	acement	ы	load	work per cycle	cycle	cumulative work	re work	51	offices	damping	une.
EEEP Parameters	units Vice	initial 10.000	EEEP Parameters	meters	units view	inthal A con	Initial	ei <	mm	Kips	SI <	Kıp-tt	KN'B	Kıp-it.	RN:	Kup/m.	KN/mm	ratio	number
Peak load, F _{peak}	sita NX	25 762	Peak unit load, v _{peak}	nd. V _{perk}	KN/m	1001	-	0 008	2,487	2,422	10 773	0 014	0000	0 014	0000	26312	4 608	0115	1 6
The second first second	.e	2.245	9.4		1	2.245		0.151	3.832	3.238	14.404	0.026	0.036	0.104	0.141	21.968	3.847	0.102	703
LITIT AT PEAK JOAG, Apost	mm	57.02	LINE AT CAPACITY, Aparts	IIV. Aprel	mm	57.02	14	0.204	5.171	3.955	17.592	0.042	0.057	0.238	0.322	19.662	3.443	0.099	1401
Vield load F	Kips	11.046	Vield unit load w	ad v	Kip/ft.	1.381	21	0.415	10.554	6.411	28.515	0.170	0.231	0.556	0.754	15.497	2.714	0.122	2100
Hard - transment -	KN	49.132		parts.	KN/m	20.149	25	0.629	15.966	8.198	36.465	0.343	0.466	1.145	1.552	13.082	2.291	0.127	2500
Drift at vield load. And	.ei	0.648	Drift at vield load. And	Dad. And	ij.	0.648	20	0.825	20.954	9.296	41.350	0.498	0.675	2.116	2.868	11.393	1.995	0.123	2900
	mm	16.46			шш	16.46	32	1.208	30.693	10.726	47.710	1.145	1.552	3.774	5.116	9.383	1.643	0.164	3199
Proportional limit,	Kips	5.015	Proportional limit,	l limit.	Kiplfi.	0.627	35	1.829	46.469	11.830	52.621	1.911	2.590	6.609	8.960	6.644	1.163	0.167	3499
0.4F peak	KN	22.305	0.4vpat	-	KNm	9.147	38	2.501	63.525	12.220	54.355	3.534	4.791	11.496	15.586	4.926	0.863	0.222	3798
Drift at prop. limit,	,ei	0.294	Drift at prop. limit,	. limit,	.ei	0.294	41	2.388	60.643	8.453	37.599	2.884	3.910	16.342	22.155	3.952	0.692	0.292	4098
$\Delta @0.4F_{put}$	uuu	7.47	∆@0.4vpmk	ant.	шш	7.47	4	3.275	83.193	3.312	14.732	0.736	0.998	16.711	22.656	1.016	0.178	0.130	8352
Faihure load or 0.8Fpeek	Kips	10.029	Until load at tailure or	athre or	Kipifi.	10,254	14	2.436	61.883	4.525	20.127	0.873	1.184	11.620	15.754	1.863	0.326	0.152	7545
	i B	7 004	U.O.Vpark	-	in m	7 004 C	20	077.0	006.10	707.0	160.41	010.0	501-1		000.12	610.1	0/1/0	94170	0410
Drift at failure, $\Delta_{\rm failure}$	1 8	76.05	Drift at failure, Δ _{febro}		1 88	76.05													
Elastic stiffness, K.	Kip/in.	17.057	Shear modulus, G		Kip/in.	17.057													
@0.4F.me	KN/mm	2.987	@0.4Fpee		KN/mm	2.987													
Work until failure	Kip-fi. KN-m	16.342	Work until faihure per		Kip-ft./ft. KN-m/m	2.043													
Load @ .32 in.	Kips	5.316	Unit load @ .32	.el	Kips/ft.	0.665	cycle	Negative stroke	e stroke	Positive stroke	stroke	Negative stroke	stroke	Positive stroke	stroke	Area, Kip-in.	(ip-in.	Unit load, KN/m	KN/m
(8.13 mm)	KN	23.648	(8.13 mm)	Î	KNm	9.698	initial	.si	Kips	.si	Kips	uuu	KN	uuu	KN	negative	positive	negative	positive
Load @ .48 in.	Kips	6.971	Unit load @ .48 in.	.48 in	Kips/ft.	0.871		0	0	0	0	0	0	•	0	0	0	0	0
(12.19 mm)	KN	31.007	(12.19 mm)	(III	KN/m	12.716	1	-0.123	-2.477	0.073	2.367	-3.122	-11.017	1.852	10.529	0.152	0.086	-4.518	4.318
Load @ .96 in.	Kips	9.844	Unit load @ .96 in.	.96 in	Kips/ft.	1.231	7	-0.177	-3.395	0.124	3.081	-4.508	-15.102	3.155	13.705	0.160	0.140	-6.193	5.621
(24.38 mm)	KN	43.787	(24.38 mm)	Î	KN/m	17.957	14	-0.233	-4.193	0.174	3.717	-5.913	-18.651	4.430	16.532	0.210	0.171	-7.649	6.780
Load @ 1.6 in.	Kips	11.688	Unit load @ 1.6 in.	1.6 in	Kips/ft.	1.461	21	-0.452	-6.654	0.379	6.167	-11.481	-29.598	9.627	27.432	1.189	11011	-12.138	11.250
(uuu +0.0+)	NA	496 TC	(+0.04 IMM)	(m)	mvn.	175.17	67	7/0/0-	140.8-	C9C.0	\$.00.8	+00°/1-	776.16-	14.809	100.00	¢C0.1	CO+-1	005.01-	CU0.41
Ductility factor, µ		4.62	Seq @Vpeek	ų,		0.194	50	-0.928	-9.661	0.721	8.931	-23.581	-42.973	18.326	39.726	2.316	1153	-17.623	16.292
		a de la constante de la constan	1				32	-1.551	-11.790	0.865	9.662	-39.408	-52.441	21.979	42.978	6.683	1.337	-21.506	17.626
TUTD Decompletes	mite	mantine	ttal				20	C017-	C67771-	C64-T	022 01	110.05-	420.40-	00005	4CC.UC	F86.7	020.01	974-77-	201.02
CIENCIE L'AUMIENELS		n con	DUNITVE				00	010.0-	70011-	190.9	01/10	110.00-	±/010-	040.60	CC0.0C	1000	000.01	4/0117-	001.07
Fyield	kups KN	-48.958	002.04				1	+C2.4-	502.7-	5./0 1	1977/	\$\$C./01-	10.21-	242.24	701.75	0011	366.41	797-0-	061.61
- Arra	Kips/ft.	-1.376	1.386																
1	KNm	-20.078	20.221																
Δ _{γinit}	ei Ma	-16.90	160.0																
	.e	-3.001	2.987																
∆ ficiture	uu	-76.22	75.88																
	F																		
te param	t	10 205	positive 10 776	average															
215	sira NX	-54.602		55.765															
		1000 L		10.100															

Specimen 7b	For total length		Specimen 7b	Per unit length	length	Specimen	7b	For total length	length									
	б Щ			CUREE cyclic test	yclic test			CUREE cyclic test	vclic test									
Effective wall length	\neg	2.44m	Effective wall length	96in.	2.44m	Effective wall length	ll length	96in.	2.44m						;			
Date:	$\left \right $	Τ	Date:	Time:		cycle	avg. displacement	lacement	рò	load	work per cycle	er cycle	cumulative work	We WOLK	cyches	cyclic suffices	damping	anne
EEEP Parameters	+	mitial	EEEP Parameters	units	inthal	initial	si -	uu	Kips	N.	Kipit	KNin	Kıp-ft.	KN·m	Kip/m.	KN/mm	ratio	number
Peak load, F _{peak}	Kips KN	10.893	Peak unit load, v _{peak}	Kuputt. KNAm	1.362	-	0 00	0 015	0 133	0 504	0 000	0 00 0	0 000	0 000 0	403 570	20.674	0.720	51 5
		1 040		in the second	070-21	• •	0100	1722	1624	71211	0.010	0000	0.021	0.040	104.401	4 700	101.0	241
Drift at peak load, Δ_{puck}		70 YF	Drift at capacity, Δ_{peak}	-mm	946 04	, PL	0103	4 003	100.5	PES 21	0.044	0.060	10.168	200 U	20.412	3 575	10110	1011
		9.785		Kin/ft.	1.223	12	0.397	10.089	6.183	27.501	0.159	0.216	0.478	0.648	15.563	2.725	0.124	3927
Yield load, Fyeld		43.524	Yield unit load, V _{yield}	KN	17.849	25	0.594	15.083	7.716	34.323	0.303	0.411	1.015	1.376	12.992	2.275	0.126	4727
	Ì			.E	0 510	00	0 704	20.178	2 284	30 516	0 464	0.63.0	1 015	3,506	11 125	1 050	0 126	5537
Drift at yield load, Δ_{ykkl}	È		Drift at yield load, Δ_{yikk}	- mm	13.18	32	1.324	33.640	10.738	47.763	1.357	1.840	3.716	5.037	8.132	1424	0.182	1219
Pronortional limit.		4.357	Proportional limit.	Kin/ft.	0.545	35	1.848	46.937	10.893	48,451	1 972	2.674	6.623	8.980	5.895	1 032	0.187	6727
0.4F much	Ė	19.380	0.4v _{read}	KNm	7.948	38	2.421	61.501	9.083	40.403	2.798	3.794	10.747	14.570	3.807	0.667	0.239	7327
Drift at prop. limit,		0.231	Drift at prop. limit,	, ii	0.231	41	3.440	87.366	6.940	30.871	2.721	3.688	15.157	20.550	2.001	0.350	0.215	7928
$\Delta @0.4F_{put}$		5.86	$\Delta @ 0.4 v_{pask}$	mm	5.86	44	0.319	8.092	0.449	1.997	0.022	0:030	16.733	22.685	1.258	0.220	0.260	8551
Failure load or 0.8Fpeek	Kips 8	8.714 20.761	Unit load at failure or	Kip/fi. VV/v	15 206													
	T	3 033	V-OV put	in.	3.033													
Drift at failure, Δ_{fitmas}	È	77.03	Drift at failure, $\Delta_{\rm fabres}$	mm	77.03													
Elastic stiffness, K.	-	18.874	Shear modulus, G	Kip/in.	18.874													
@0.4Fpee	-	3.305	@0.4Fpee	KN/mm	3.305													
Work until failure	Kip fi.	10.747	Work until failure per	Kip-fi./fi.	1.343													
Load @ .32 in.		5.336	Unit load @ .32 in.	Kins/ft.	0.667	cvcle	Negative stroke	stroke	Positive stroke	stroke	Negative stroke	stroke	Positive stroke	stroke	Area.	Area. Kip-in.	Unit load. KN/m	1. KN/m
(8.13 mm)	KN 23	23.735	(8.13 mm)	KNm	9.734	initial	, si	Kips	.ei	Kips	mm	KN	mm	KN	negative	positive	negative	positive
Load @ .48 in.		6.829	Unit load @ .48 in.	Kips/ft.	0.854		0	0	•	0				0	0	0		0
(12.19 mm)	-	30.373	(12.19 mm)	KNm	12.456	1	0.001	0.132	0.000	0.135	0.025	0.587	0.005	0.601	0.000	0.000	0.241	0.246
Load @ .96 in.	Kips 9	9.476	Unit load @ .96 in.	Kips/ft.	1.185	4	-0.109	-2.557	0.106	2.711	-2.764	-11.375	2.703	12.058	0.133	0.151	-4.665	4.945
(24.38 mm)	-	42.149	(24.38 mm)	KNm	17.286	14	-0.191	-3.744	0.195	4.140	-4.862	-16.653	4.945	18.415	0.260	0.302	-6.829	7.552
Load @ 1.6 in.	Kips 10	10.817	Unit load @ 1.6 in.	Kips/ft.	1.352	21	-0.393	-5.998	0.401	6.368	-9.982	-26.677	10.196	28.326	0.982	1.086	-10.940	11.616
(40.64 mm)	-	48.113	(40.64 mm)	KNm	19.732	25	-0.581	-7.459	0.607	7.974	-14.757	-33.176	15.408	35.470	1.265	1.472	-13.606	14.546
Ductility factor, µ		5.83	Carl @Vpeak		0.187	29	-0.763	-8.570	0.826	9.198	-19.370	-38.120	20.985	40.911	1.455	1.885	-15.633	16.778
						32	-1.220	-10.294	1.428	11.182	-31.001	-45.790	36.279	49.737	4.319	6.135	-18.779	20.397
		initial	ial			35	-1.853	-10.452	1.842	11.333	-47.076	-46.492	46.797	50.411	6.565	4.662	-19.067	20.674
EEEP Parameters	units ne	negative	positive			38	-2.842	706.6-	3.320	6.028	-72.194	-44.066	84.328	26.815	10.067	12.827	-18.072	10.997
:: 11	Kips -9	-9.598	9.972			41	-3.616	-8.422	4.424	4.138	-91.844	-37.461	112.382	18.408	7.090	5.615	-15.363	7.549
- yeald		-42.690	44.357			44	-0.275	-0.040	0.362	0.858	-6.993	-0.180	9.192	3.815	-14.135	-10.148	-0.074	1.564
V		-1.200	1.247															
test.		-17.508	161.81															
Apaid		-0.529	0.509															
	T	10.44	7474															
∆ fithers		760.0	+/+/7															
	-	-91.24	02.55															

Form No. M410 = © 2011 APA – The Engineered Wood Association = www.apawood.org

average 10.893 48.454

positive 11.333 50.413

negative -10.452 -46.494

Kips KN

 $\mathbb{F}_{\mathrm{SLS}}$

STS

Ultimate parameters

CULALE CYCLE			CUKEE CYCLIC TEST	JC TEST			CUREE CV										
	Т	ll leneth	⊢	2.44m F	Effective well length	leneth	06in	Offin 2 Adm									
	Date:	1999	Time:		cvcle	ave. displacement		- ы	load	work per cycle	er cycle	cumulat	cumulative work	cvclic	cyclic stiffness	damping	line
	al EEEP Parameters	rameters		initial	initial	.si	mm	Kips	KN	Kip-ft.	KN m	Kip-ft.	KN·m	Kip/in.	KN/mm	ratio	number
	_	Peak unit load, v _{peek}	Kip/fi.	1.924	-	0.00	0 1	0 0000	0	0 0	0 017	0 013	0 01	27.430	23 Y	121.0	134
			T	2.122		0.102	2.597	3.156	14.040	0.024	0.032	0.092	0.125	31.229	5.469	0.139	876
	10 LUITE AT CAPACITY. Apres.	actry, Aper		53.90	14	0.140	3.564	3.837	17.066	0.038	0.052	0.210	0.285	27.869	4.830	0.134	1751
		Vield unit load, V _{vidd}	Ì	1.738	21	0.303	7.701	6.226	27.691	0.135	0.183	0.472	0.639	21.003	3.678	0.136	2625
		l		10.304	25	0.473	12.022	8.447	57.570	0.200	555.0	0.922	1.250	18.157	3.180	0.124	3124
		Drift at yield load, $\Delta_{\rm piets}$		0.0/4	2	2000	180.01	10.585	40.185	0.418	00001	C60.1	4 714	101.01	2.825	0160	3000
È	5 Pronortional limit.	nal limit.	-	0.769	35	1.773	45.046	15.286	67.991	2.339	3.172	6.780	0103	8.658	1516	0.164	4374
		0.4v _{pade}	KN/m 1	11.228	38	2.400	60.968	15.220	67.700	4.186	5.675	12.595	17.075	6.367	1115	0.218	4749
-	Ä		_	0.298	41	3.470	88.133	11.405	50.730	4.216	5.715	19.305	26.173	3.277	0.574	0.202	5124
1		- 1	-	7.57													
Kups 12.514 KN 54.774		IG OI	KNin 1	1.539 22.463													
	€¤C		_	3.244													
-	-		_	\$2.39													
Kip/in. 21.098		5		21.098													
_			_	3.695													
Kip-ft. 19.305 KN-m 26.173		Work until failure per unit laneth	Kip-ft./ft. 2 KN-m/m 1	2.413 10.734													
┢	Umit	Е		0.812	cycle	Negative stroke	stroke	Positive stroke	stroke	Negative stroke	e stroke	Positive	Positive stroke	Area	Area, Kip-in.	Unit load, KN/m	I, KN/m
KN 28.880			-	11.844	initial	.si	Kips	.ei	Kips	uuu	KN	uuu	KN	negative	positive	negative	positive
Kips 8.495	D	@ .48 in	_	1.062		0	0	0	0	•	0	•	0	0	0	0	0
KN 37.786	86 (12.19 mm)	(uuu	KN/m 1	15.496	1	-0.053	-2.093	0.070	2.485	-1.356	-9.308	1.770	11.053	0.056	0.087	-3.817	4.533
Kips 12.615	-	Unit load @ .96 in.		1.577	5	-0.087	-2.912	0.118	3.400	-2.202	-12.954	2.992	15.125	0.083	0.142	-5.313	6.203
KN 56.113	13 (24.38 mm)	(mm)		23.012	14	-0.116	-3.574	0.165	4.100	-2.941	-15.895	4.186	18.236	0.094	0.176	-6.519	7.479
Kips 14.972	D	@1.6m		1.872	21	-0.252	-6.013	0.354	6.438	-6.413	-26.746	8.989	28.637	0.655	966.0	-10.969	11.744
ľ	Ŭ	(mm)	_	27.311	25	-0.402	-8.122	0.555	8.771	-10.206	-36.128	13.838	39.012	1.055	1.452	-14.816	15.999
4.85	5 5 _{n1} @V _{peek}	NV peak		0.191	29	-0.562	-9.941	0.744	10.826	-14.270	-44.216	18.905	48.153	1.445	1.955	-18.133	19.748
					32	-1.030	-13.521	1.319	14.611	-26.165	-60.139	33.505	64.988	5.493	7.310	-24.663	26.652
	initial				35	-1.630	-14.910	1.916	15.662	-41.412	-66.318	48.679	69.663	8.533	9.042	-27.198	28.569
units negative	tive positive				38	-2.187	-14.573	2.614	15.868	-55.547	-64.822	66.388	70.579	8.204	10.991	-26.584	28.945
Kips -13.390					41	-3.297	-10.110	3.642	12.701	-83.746	-44.968	92.519	56.493	13.701	14.695	-18.442	23.168
Kips/ft1.674																	
10.00 -0.501 mm -14.34	01/2/10																
Ì																	
È																	

average 15.389 68.452

positive 15.868 70.582

negative -14.910 -66.322

units Kips KN

 \mathbb{F}_{sts}

ST5

Ultimate parameters

For total length Specimen 8b CUREE cyclic test
Effective wall length
Date: Time:
EEEP Parameters units
15.520 Peak unit load, v _{jeek} K.N.m. 28.310 1 60.032 Peak unit load, v _{jeek} K.N.m. 28.310 1
Drift as conscript a
UIUI Base of the second of the
Yield unit load, v _{ield} Kip/ft.
257 0 10 10 10 10 10 10 10 10 10 10 10 10 1
Drift at yield load, Δ_{yield} mm
Proportional limit, Kip/ft.
0.4vpaak KN/m
mit, in.
7.67 △@0.4v _{peak} mm 7.67 15.520 Unit load at failure or Win/6 1.040
0.8v _{suk} KNVm
Drift at failure A
Shear modulus, G Kip/in.
@0.4F peek KN/mm
13.999 Work until failure per Kup-ft./ft. 1.750 18.070 with laneth KN-m/m 7.783
Unit load @ 32 in. Kips/ft.
KNm
8.102 Unit load @ .48 in. Kips/ft. 1.013
11.347 Unit load @ .96 in. Kips/ft. 1.418
50.472 (24.38 mm) KN/m 20.699
13.753 Unit load @ 1.6 in. Kips/ft. 1.719 51 175 A1 54 mark V.M.m. 75 069
C. @V
initial
negative positive
-2.14/ 5.98/

average 15.520

positive 16.461 73.221

negative -14.579 -64.850

units Kips

Ultimate parameters Fsts

\$75

96in. 2.44m Effective wall length Time: 070 2.44m Effective wall length nmith initial initial initial initial k mith 1362 1 0.059 k mith 1656 1 0.059 k mith 1656 1 0.039 k Kip/th 1656 1 0.059 k Kip/th 1656 1 0.059 k Kip/th 10.857 29 0.669 m 0.735 29 0.669 38 1.142 k Kip/th 10.866 38 1.123 1.142 k Kip/th 1.0866 38 1.124 0.141 k Kip/th 1.664 38 1.142 0.181 k Kip/th 1.264 38 1.132 1.142 k Kip/th 1.278 38 1.132 k <td< th=""><th>For total length CUREE cyclic test</th><th>_ H</th><th>Specimen 9a</th><th>Per unit length CUREE cyclic test</th><th></th><th>Specimen</th><th>9a</th><th>For total length CUREE cyclic test</th><th>length clic test</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	For total length CUREE cyclic test	_ H	Specimen 9a	Per unit length CUREE cyclic test		Specimen	9a	For total length CUREE cyclic test	length clic test										
Tink Crick in the interval of the inte	96in. 2.44m Effective wall length	Effective wall length	Γ	96in. 2.4		fective wall	length	96in.	2.44m										
	Ä	Date:	1		$\left \right $	cycle	avg. displa	acement		load	work pe	r cycle	cumulati	ve work	cyclic s	stiffuess	damping	line	
1100 0	initial EEEP Parameters	Η			ritial	initial	.si	mm	Kips	KN	Kip-ft.	KN·m	Kip-ft.	KN·m	Kip/in.	KN/mm	ratio	number	
110 7 0000 113	14.892 Peak unit load, v _{peek}		MA		.862 166	-	0 050	1 404	0 1 804	0	0 000	0 110 0	0 00	0 0	20.722	6 3 6 7	0140	100	
5614 11 0141 3.53 3.36 1466 0131 0.316 <td>2210</td> <td></td> <td>- 1-4</td> <td>T</td> <td>210</td> <td></td> <td>0.099</td> <td>2.515</td> <td>2.587</td> <td>11.507</td> <td>0.019</td> <td>0.025</td> <td>0.066</td> <td>0.089</td> <td>26.215</td> <td>4.591</td> <td>0.139</td> <td>778</td>	2210		- 1-4	T	210		0.099	2.515	2.587	11.507	0.019	0.025	0.066	0.089	26.215	4.591	0.139	778	
1006 21 0.310 527.1 53.00 0.119 0.330 0.56.7 23.30 0.119 0.735 25 0.660 16.07 65.61 13.11 13.07 13.07 13.07 13.07 13.01 13.01 13.00 13.01 <td>56.14 Ditti di capacity, Apade</td> <td></td> <td>a</td> <td></td> <td>6.14</td> <td>14</td> <td>0.141</td> <td>3.573</td> <td>3.293</td> <td>14.646</td> <td>0.031</td> <td>0.041</td> <td>0.156</td> <td>0.211</td> <td>23.499</td> <td>4.115</td> <td>0.126</td> <td>1554</td>	56.14 Ditti di capacity, Apade		a		6.14	14	0.141	3.573	3.293	14.646	0.031	0.041	0.156	0.211	23.499	4.115	0.126	1554	
J.J.L. 25 0.468 1.203 0.311 1.321 1.032 1.3321 2.7.10 0.110 18.07 31 13.23 13.23 13.23 13.23 13.24 0.110 0.317 31 51.00 13.63 13.63 13.63 13.63 13.40	13.004 Yield unit load, V _{ield}		2 s		50	21	0.310	7.865	5.632	25.050	0.117	0.159	0.376	0.510	18.271	3.200	0.129	2331	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5//845 2012	1	24 ·		200	55	0.488	C65.21	1/5/	1/0.55	0.244	055.0	0.799	1.085	/70.01	2.150	071.0	0117	
0.73; 55 1315 46107 1464 65315 1985 2.665 5.905 6.044 5.315 1985 7.139 1.230 1.230 1.230 0.145 10006 38 2.112 5.300 15.056 66.968 2.941 3.965 7.139 1.200 0.166 2432 2.033 5.401 1.466 65.315 1.968 2.463 0.246 2.016 0.166 2433 2.030 17.040 2.041 3.963 2.441 15.277 0.068 0.166 2433 2.030 15.065 66.968 2.441 3.263 7.139 1.200 0.166 17.061 17.06 14.01 15.207 10.167 10.167 10.167 10.167 10.166 10.166 10.166 10.166 10.166 10.166 10.166 10.166 10.166 10.166 10.166 10.166 10.166 10.166 10.166 10.166 10.166 10.166 10.166	Drift at yield load, Δ_{ykt}		1 10		5.67	32	0.00%	31.552	12.721	40.581 56.581	1.2.0	11653	3.105	4.210	10.341	1.811	0.148	3552	
10000 38 2112 5300 15056 66.06 2.041 3.88 0.025 13.60 12.03 0.016 3.600 3.601 3.403 3.403 3.403 3.403 4.741 15.237 20.658 4.843 0.846 0.176 3.600 3.601 3.403 5.608 3.407 4.741 15.237 20.658 4.843 0.846 0.176 3.603 4.911 3.509 5.618 3.407 8.78 0.176 0.176 0.176 1.104 1.136 m Km Mark stroke Mark stroke Mark stroke Mark stroke 0.166 0.176 0	5.957 Proportional limit,		flip/fi	-	745	35	1.815	46.107	14.684	65.315	1.988	2.695	5.926	8.034	8.155	1.428	0.143	3885	
0.337 41 2.894 73.505 13.403 5.407 4.741 15.237 20.658 4.843 0.848 0.106 10.600 10.600 10.601 10.601 10.605 4.543 0.845 0.106 11.080 10.601<	26.496 0.4V _{park}		KN/m		366	38	2.122	53.900	15.056	66.968	2.941	3.988	10.225	13.863	7.139	1.250	0.176	4220	
1000 24503 1000 24	0.337 Drift at prop. limit,		E.	-	337	41	2.894	73.505	13.403	59.618	3.497	4.741	15.237	20.658	4.843	0.848	0.176	4554	
24:300 24:300 17:694 86:41 17:694 86:41 17:694 17:694 17:694 96:47 17:694 17:694 10:605 crcle Negative stroke Area, Kip-in. 0 0 0 0 0 0 0 0:303 11:368 1 1.445 8.193 0.034 4.033 10:503 0	8.56 <u>A@</u> 0.4v _{put}	-1	mm	-	2														
1733 1733 1734 17894 0644 1044 1044 1044 1044 1044 1044 1044 1044 1044 1044 1046 1056 1	Kups 15.445 Unit load at falture of Kupht. KN 59.794 0.8V_A		H H H		522														
69.42 7.064 1.7064 Negative stroke Positive stroke Area, Kip-in. Unit load. 1.708 vrok Negative stroke Positive stroke Area, Kip-in. Unit load. 1.708 vrok Negative stroke Roys 0	2.733		.ei	_	.733														
17.644 Tri field 1.0730 Cycle Negative stroke Positive stroke Area, Kip-in. Unit load, 0.720 cycle Negative stroke Positive stroke Area, Kip-in. Unit load, 0.730 cycle initial in Ktps initial initial positive stroke Area, Kip-in. Unit load, 0.730 cycle initial in Ktps initial initial positive stroke Area, Kip-in. Unit load, 0.030 0	69.42 LUTIT AT IAUNUE, Drickes		шш	_	9.42														
3.009 1.178 Negative stroke Positive stroke Positive stroke Area, Kip-in. Unit load. 1.170 orycle Positive stroke Positive stroke Positive stroke Area, Kip-in. Unit load. 10.502 imit in Kups Kup Or 0 O <th colspa<="" td=""><td>Shear modulus, G</td><td></td><td>Kip/in.</td><td>_</td><td>7.694</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td>Shear modulus, G</td> <td></td> <td>Kip/in.</td> <td>_</td> <td>7.694</td> <td></td>	Shear modulus, G		Kip/in.	_	7.694													
11278 11278 Area, Klp-in. Unit load. 0.700 cycle Negative stroke Positive stroke Positive stroke Area, Klp-in. Unit load. 0.700 initial in. KTys in. KTys in. Visitive stroke Doi: 0<	3.099 @0.4F _{peek}		KN/mm	_	660														
0.730 Cycle Negative stroke Positive stroke Positive stroke Area, Klp-in. Unit load. 10.502 imitial in. Ktps in. Ktps in. Ktp-in. Unit load. 10.502 imitial in. Ktps in. Ktps in. Ktp-in. Unit load. 10.502 imitial in. Ktps in. Ktps in. Ktp-in. Unit load. 13.608 1 -0.061 -1.766 0.057 1.842 -1.542 -7.854 1.445 8.193 0.054 0.052 -3.231 13.609 -1.766 0.057 1.842 -1.146 2.667 11.639 0.0107 -0.133 -3.356 -1.1459 3.777 -4.403 3.774 -1.458 -1.359 0.0107 -1.313 -3.356 -1.1469 -1.0151 -5.565 0.133 5.699 -7.355 -1.4469 -1.0151 -1.313 -1.313 -1.317 -1.312 -1.3174 -1.0151 -3.5	Kip-fi. 10.225 Work until failure per Kip-fi./fi KN-m 13.863 until leneth KN-m/m		KN-m/n	_	.278 685														
10.502 initial in KLps in KLps in KLps in KLps in in Klps positive pesitive pe	5.757 Unit load @ .32 in.	Γ.	Kips/ft.	L	720	cycle	Negative	stroke	Positive	stroke	Negative	stroke	Positive	stroke	Area,	Kip-in.	Unit loa	d, KN/m	
0 0	25.607 (8.13 mm)		KNm	_		initial	.si	Kips	.ei	Kips	uuu	KN	mm	KN	negative	positive	negative	positive	
1 0.061 -1.766 0.057 1.842 -1.542 -7.854 1.445 8.193 0.054 0.052 -3.221 1383 7 0.003 2.566 0.105 2.667 11.599 0.070 0.107 -4682 1383 7 0.013 -2.566 0.105 2.668 -3.348 -14.564 3.799 0.0107 -4682 1.748 21 0.233 5.565 0.333 5.309 -3.348 -14.564 3.3769 0.107 -4682 1.748 21 0.233 5.309 -3.355 -3.348 -14.564 3.3769 0.013 0.151 -13.774 23515 25 0.446 7.551 0.530 7.992 -11.341 -3.556 0.151 13.774 23515 25 0.446 7.551 0.530 7.992 -14.463 15.493 5.312 13.174 23516 14.654 -15.864 13.578 -33.766 1.468 2.31.77 <	đ		Kips/ft.	_	939	-	0	0	0	0	0	0	0	0	•	0	0	0	
1.383 7 0.093 2.566 0.105 2.667 11.599 0.070 0.107 4.682 20.178 14 -0.132 -3.281 0.149 3.305 -3.348 -14.564 3.797 14.669 0.113 0.133 5.985 17.748 21 0.233 5.565 0.333 5.569 -7.351 0.533 5.446 -5.516 0.1135 -5.566 0.1135 -5.566 0.133 5.566 0.133 5.566 0.133 5.566 0.133 5.566 0.133 5.992 -5.566 0.1135 -5.566 0.133 5.939 7.992 1.5469 0.1151 -5.935 -5.566 0.155 -5.566 0.155 -5.566 0.155 -5.566 0.133 5.569 0.495 1.549 10.151 -13.177 0.159 29 -0.667 -1.2864 1.358 1.2578 -28.611 -57.217 34.493 55.946 57.739 68.46 27.177 38 -1.944 -1.14875 11.574 -49.9555 66.163 49.952 64.966 7.745			KN/N		3.698	1	-0.061	-1.766	0.057	1.842	-1.542	-7.854	1.445	8.193	0.054	0.052	-3.221	3.360	
20178 14 0.131 -3.281 0.149 3.305 -3.348 :14.594 3.797 14.699 0.113 0.132 -5.985 1.748 21 0.287 -5.565 0.333 5.699 -7.285 -3.4753 8.446 25.347 0.686 0.824 -10.151 25515 25 0.333 5.699 -7.285 -3.1366 13.459 33.769 10.955 1312 -13.774 25516 0.530 7.592 -11.331 -33.566 13.453 33.769 10.95 1313 -13.774 255 0.607 -9.232 0.731 9.182 -15.415 41.063 13.493 55.946 57.39 6.824 23.465 32 -1.106 -1.2.664 14.493 1.977 14.952 64.466 7.455 8.234 27.147 38 -1.943 -1.4875 1.9671 14.935 -60.353 4.156 4.155 -27.137 41 -2.454 -1.5.201 3.334 -68.015 84.676 51.221 7.714 2.768 -27.803 41 -2.454 -1.5.201 3.334 -68.015 84.676 51.221 7.714 2.768 -27.803	11.062 Unit load @ .96 in.		Kips/f		383	1	-0.093	-2.566	0.105	2.608	-2.362	-11.416	2.667	11.599	0.070	0.107	-4.682	4.757	
1.748 21 0.287 -5.565 0.333 5.699 -7.285 2.4.753 8.446 25.347 0.686 0.824 -10.151 25515 25 -0.446 -7.551 0.330 7.992 -11.331 -33.566 13.459 33.769 1.045 1.312 -13.774 25515 29 -0.607 -9.232 0.731 9.182 -15.415 -10.63 13.459 33.769 1.045 1.312 -13.774 322 -1.1264 1.358 1.2581 -5.511 -5.7127 34.465 5.739 6.824 -2.646 32 -1.1264 1.358 1.2578 -2.8611 -5.7177 34.955 6.6137 34.995 5.539 4.156 1.4553 -2.7137 38 -1.943 -1.4899 3.002 11.374 -49.355 -66.270 78.53 4.156 1.4553 -2.7137 41 -2.454 -15.201 3.334 11.515 -62.334 -68.015 84.676 <td< td=""><td>KN 49.202 (24.38 mm) KNh</td><td></td><td>KNA</td><td></td><td>0.178</td><td>14</td><td>-0.132</td><td>-3.281</td><td>0.149</td><td>3.305</td><td>-3.348</td><td>-14.594</td><td>3.797</td><td>14.699</td><td>0.113</td><td>0.132</td><td>-5.985</td><td>6.028</td></td<>	KN 49.202 (24.38 mm) KNh		KNA		0.178	14	-0.132	-3.281	0.149	3.305	-3.348	-14.594	3.797	14.699	0.113	0.132	-5.985	6.028	
All All <td>Kips 13.988 Unit load @ 1.6 in. Kips/f</td> <td></td> <td>Kips/f</td> <td></td> <td>748</td> <td>21</td> <td>-0.287</td> <td>-5.565</td> <td>0.333</td> <td>5.609</td> <td>-7.285</td> <td>-24.753</td> <td>8.446 13.460</td> <td>25.347</td> <td>0.686</td> <td>0.824</td> <td>10.151</td> <td>10.395</td>	Kips 13.988 Unit load @ 1.6 in. Kips/f		Kips/f		748	21	-0.287	-5.565	0.333	5.609	-7.285	-24.753	8.446 13.460	25.347	0.686	0.824	10.151	10.395	
32 -1126 -12864 1358 13.578 -23.611 -57.217 34.403 55.946 5.739 6.824 -23.465 36 -1.664 -14.875 1967 14.493 -42.366 -66.163 49.952 64.466 7.455 8.238 -27.134 38 -1.664 -14.875 1.967 14.493 -40.355 -66.163 49.952 64.466 7.455 8.238 -27.134 38 -1.943 -14.875 1.935 -66.163 49.952 64.466 7.455 8.238 -27.134 38 -1.9489 3.002 11.374 -40.355 -66.163 49.952 64.466 7.455 8.238 -27.134 41 -2.454 -15.201 3.334 -103.314 -68.015 84.676 51.221 7.714 2.768 -27.893 41 -2.454 -15.201 3.334 -68.015 84.676 51.221 7.714 2.768 -27.893	3.72 C@v	1	TATA I	+	159	20	-0.607	-9.232	0.731	9.182	-15.415	-41.063	18.562	40.842	1.340	1.685	-16.840	16.749	
-1.664 -14.875 1.967 14.493 -42.263 -66.163 49.952 64.466 7.455 8.238 -27.134 -1.943 -14.899 3.092 11.374 -49.355 -66.270 78.532 50.589 4.156 14.553 -27.137 -2.454 -15.291 3.334 11.515 -62.334 -68.015 84.676 51.221 7.714 2.768 -27.893		() (32	-1.126	-12.864	1.358	12.578	-28.611	-57.217	34.493	55.946	5.739	6.824	-23.465	22.944	
-1.943 -14.899 3.092 11.374 -49.355 -66.270 78.532 50.589 4.156 14.553 -27.177 -2.454 -15.291 3.334 11.515 -62.334 -68.015 84.676 51.221 7.714 2.768 -27.893	initial	uitial				35	-1.664	-14.875	1.967	14.493	-42.263	-66.163	49.952	64.466	7.455	8.238	-27.134	26.438	
-2.454 -15.291 3.334 11.515 -62.334 -68.015 84.676 51.221 7.714 2.768 -27.893 3	units negative positive	L				38	-1.943	-14.899	3.092	11.374	-49.355	-66.270	78.532	50.589	4.156	14.553	771.72-	20.747	
	-13.606					41	-2.454	-15.291	3.334	11.515	-62.334	-68.015	84.676	51.221	7.714	2.768	-27.893	21.006	
	-60.518	55.167																	
	-1.701	1.550																	
	-24.819	22.624																	
	III0./50 0./55	0./35																	
		2010 5																	
	51 U2	76.61																	

average 15.252 67.844

positive 15.213 67.669

negative -15.291 -68.018

units KN

 $F_{\rm SLS}$

S. TS

Ultimate parameters

Snaciman 0h	For total length	Г	Sherimen 0h	Per unit	unit lensth	Shecimen	40	For total length	eneth									
	CUREE cyclic test			CUREE cyclic test				CUREE cyclic test	clic test									
Effective wall length	Н	2.44m	Effective wall length	96in.	2.44m	Effective wall length	ll length	96in.	2.44m									
Date:	Time:		Date:	Time:		cycle	avg. displacement	acement	рò	load	work per cycle	r cycle	cumulative work	ve work	cyclic s	cyclic stiffness	damping	line
EEEP Parameters	units	initial	EEEP Parameters	units	initial	initial	ä	mm	Kips	KN	Kip-ft.	KN·m	Kip-ft.	KN·m	Kip/m.	KN/mm	ratio	number
Peak load, F _{east}	Kips	16.647	Peak unit load, v _{eak}	Kip/ft.	2.081		0	0	0	0	0	0 0	0	0				£1
	NN S	240.4/		HINN I	105.05	••	120.0	C1777	261.2	101.6	c10.0	\$10.0	CT0.0	0110	000.07		00110	197
Drift at peak load, $\Delta_{\rm peak}$	ei i	2.080	Drift at capacity, Δ_{peak}	ei i	2.080		0.150	5.457	210.5	16 363	C70.0	220.0	260.0	0.155	22.529	5.910	/11/0	1400
	Tinn Vinne	14 701		nin Vin fe	1 040	4 2	0.164	4.000	5.0/0	101 AC	126	0.164	07770	105.0	010.02	000.0	C11.0	66/7
Yield load, F _{yield}	sđru	17.141	Yield unit load, v _{yield}	KN/m	1:040	17	60C.0	12.2.2	120.0	10/.02	050.0	1338	60C.0	1302	14 537	2.546	1110	4008
	, m	0.045		in the second	0.045	67	727.0	16 720	2190	002.07	202.0	0.522	202.0	2 214	120 21	00000	0106	20025
Drift at yield load, Δ_{yikkl}	-mm	14 01	Drift at yield load, Δ_{yield}		24 01	6	1316	107/101	010.2	50 380	260° 1	2011	3 3/70	4 581	10.177	1 787	0.142	1610
Pronortional limit	Kins	6 650	Pronortional limit	Kin/ft	0 833	35	1 807	48 186	15 400	68 628	2 137	2,808	6 384	8 655	8 141	1 426	0130	6008
0.4F	KN	019.00	0.4v	KN/m	12.147	000	2,686	68.236	16.647	74 048	4154	5.63.2	11 051	16.203	6 201	1 086	0.177	7508
Drift at prop. limit.	.E	0.427	Drift at prop. limit.	.e	0.427	14	3.498	88.852	14.602	64.949	4.814	6.526	19.079	25.867	4.180	0.732	0.180	8199
$\Delta @ 0.4F_{pack}$	mm	10.86	$\Delta @ 0.4 v_{pask}$	mm	10.86													
Failure load or 0.8Fpeak	Kips	14.602	Unit load at failure or	Kip/ft.	1.825													
	NY.	51515	U.SV park	HNN -	050.07													
Drift at failure, Δ_{fabres}	ili mu	3.498 88.85	Drift at failure, $\Delta_{\rm fubure}$	ii muu	3.498													
Elastic stiffness. K.	Kin/in.	15.577	Shear modulus. G	Kin/in.	15.577													
@0.4F	KN/mm	3 7 7 8	@0.4F	KN/mm	3 7 7 S													
2004 JL 20 (2)	Kin-ft	10 070	Work until faihue ner	Kim-ft-/ft	2 3 8 5													
Work until faihure	RN'II	25.867	week water for the per-	KN-m/m	10.608													
Load @ .32 in.	Kips	5.410	Unit load @ 32 in.	Kips/ft.	0.676	cycle	Negative stroke	stroke	Positive stroke	stroke	Negative stroke	stroke	Positive stroke	stroke	Area,	Area, Kip-in.	Unit load, KN/m	, KN/m
(8.13 mm)	KN	24.062	(8.13 mm)	KN/m	9.868	initial	.si	Kips	.ei	Kips	uuu	KN	uuu	KN	negative	positive	negative	positive
Load @ .48 in.	Kips	7.220	Unit load @ .48 in.	Kips/ft.	0.903		0	0	0	0	0	0	0	0	-	0	0	0
(12.19 mm)	KN	32.116	(12.19 mm)	KN/m	13.171	1	-0.096	-2.197	0.079	2.188	-2.433	-9.772	1.996	9.731	0.105	0.086	-4.007	3.991
Load @ .96 in.	Kips	11.081	Unit load @ .96 in.	Kips/ft.	1.385	7	-0.138	-2.962	0.132	3.075	-3.510	-13.177	3.363	13.675	0.109	0.142	-5.404	5.608
(24.38 mm)	KN	49.289	(24.38 mm)	KN/m	20.213	14	-0.185	-3.650	0.182	3.703	-4.712	-16.235	4.620	16.471	0.156	0.168	-6.658	6.755
Load @ 1.6 in.	Kips	14.366	Umit load @ 1.6 in.	Kips/ft.	1.796	21	-0.359	-5.868	0.378	6.174	-9.106	-26.103	9.596	27.460	0.823	0.967	-10.705	11.261
(40.64 mm)	KN	63.902	(40.64 mm)	KN/m	26.207	25	-0.523	-7.669	0.562	8.099	-13.279	-34.112	14.280	36.023	1.112	1.316	-13.990	14.773
Ductility factor, µ		3.70	Carl @Vpark		0.177	29	-0.694	-9.344	0.780	9.838	-17.617	-41.562	19.822	43.983	1.453	1.962	-17.045	18.038
						32	-1.225	-13.022	1.406	13.678	-31.125	-57.921	35.717	60.839	5.947	7.374	-23.754	24.950
		1	initial			35	-1.815	-15.130	1.980	15.727	-46.091	-67.300	50.282	69.955	8.294	8.430	-27.600	28.689
EEEP Parameters	units	negative	positive			38	-2.615	-16.611	2.758	16.684	-66.413	-73.884	70.058	74.212	12.698	12.618	-30.300	30.435
; fa	Kips	-14.707	14.736			41	-3.600	-14.363	3.396	14.841	-91.440	-63.888	86.263	66.011	15.259	10.056	-26.201	27.071
abit."	KN	-65.416	65.544															
A.L.Y	Kips/ft.	-1.838	1.842															
tenć.	KNm	-26.827	26.880															
A	,ej	-0.950	0.940															
Jaco	mm	-24.14	23.88															
	,ci	-3.600	3.396															
	mm	-91.44	86.26															

average 16.647 74.051

positive 16.684 74.216

negative -16.611 -73.887

units KN

Ultimate parameters $F_{\rm SLS}$

S'IS

960. 2.44a Effective will length 960. 2.44a Effective will length 960. 141 units minit minit <td< th=""><th>For total length CUREE cyclic test</th><th></th><th>Specimen 10a</th><th>Per unit length CUREE cyclic test</th><th>it length cyclic test</th><th>Specimen</th><th>10a</th><th>For total length CUREE cyclic test</th><th>length clic test</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	For total length CUREE cyclic test		Specimen 10a	Per unit length CUREE cyclic test	it length cyclic test	Specimen	10a	For total length CUREE cyclic test	length clic test									
Image: constraint of the standard	2.44m Effective wall length	Effective wall length	H	96in.	2.44m	Effective wa	ll length	96in.	┯┥									
mitted main mitted main filter No Open Sector KSp. KSr.	Date:		+	.:		cycle	avg. disp	acement	ьò	load	work per	r cycle	cumulati	ve work	cyclic st	tiffuess	damping	line
1352 1 08 0	initial EEEP Parameters	+	+	Τ	initial	initial	.si	mm	Kips	N	Kip-ft	KNin	Kip-ft.	KNin	Kip/in.	KN/mm	ratio	number
1531 7 0131 346 1131 5031 0041 0101 0041 7411 1306 0008 11311 25 0431 1349 1349 0433 0434 4315 0584 0008 11311 25 0431 1347 0431 044 0335 0444 0336 0584 0584 0008 0044 0038 0444 0336 0336 0336 0347 0341 0344 0335 0444 0336 0336 0347 0341 0344 0336 0346 0336 0346 0336 0347 0441 0336 0344 0346 0336 0347 0441 0346 0336 0347 0441 0346 0336 0347 0441 0346 0346 0346 0347 0441 034 0344 0346 0346 0344 0344 0344 0344 0344 0344 0344 0344 0344 0344 0344	Kups 7.473 Peak unit load, v _{peak} Kujuft. KN 33.341 Peak unit load, v _{peak} KNim				0.934	-	0 008	0 2.470	0 810	3 604	0 00	0 000	0 004	0 000	000 8	1453	0.008	51 11
14 0.105 51.0 1.300 61.03 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.005 0.004 0.017 0.005 0.014 0.017 0.008 0.014 0.016 0.013 0.015 0.016 0.	3.552 Dire + conscient +				3.552	-	0.151	3.846	1.132	5.037	0.008	0.011	0.031	0.042	7.471	1.308	0.089	781
21 0440 0.049 0.044 0.	90.21 Little capacity aparts				90.21	14	0.203	5.150	1.390	6.183	0.013	0.017	0.070	0.095	6.850	1.200	0.087	1558
29 0.819 2.006 5.574 15.890 0.146 0.135 0.000 0.814 4.302 0.764 0.005 38 3.071 7.8007 7.008 3.013 1.580 1.143 4.475 6.067 1.347 0.068 0.110 38 3.071 7.8007 7.008 3.0144 1.445 6.067 1.347 0.608 0.110 38 3.071 7.601 0.733 3.114 0.046 0.050 0.347 0.068 0.110 38 3.071 7.601 0.733 3.114 0.046 0.2000 2.347 0.066 0.147 41 3.087 9.3011 7.400 3.314 0.046 2.2000 2.9906 7.341 0.136 41 0.199 7.601 0.733 3.314 0.046 2.2000 2.9906 7.341 0.147 41 0.200 0.011 0.740 0.024 0.046 0.046 0.046 0.046	Kups 0.510 Yield unit load, v _{juds} KN/m KN 38 003				11 521	21	0.613	15 557	167.7	101.51	0.004	0.127	101.0	817-0	104.0	108-0	0.000	2721
31 1.43 5.003 5.004 6.013 1.005 6.013 1.005 6.013 0.014 0.013 0.014 0.013 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.013 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 <th0< th=""> <th0.013< th=""> <th0.013< td="" th<=""><td>1 322</td><td></td><td></td><td>_</td><td>1322</td><td>30</td><td>0.819</td><td>20.808</td><td>3.574</td><td>15,899</td><td>0.146</td><td>0.198</td><td>0.600</td><td>0.814</td><td>4.362</td><td>0.764</td><td>0.095</td><td>3225</td></th0.013<></th0.013<></th0<>	1 322			_	1322	30	0.819	20.808	3.574	15,899	0.146	0.198	0.600	0.814	4.362	0.764	0.095	3225
36 2.051 5.2.104 6.105 2.114 0.704 2.316 2.276 0.221 0.116 4 3.071 7.303 3.2063 1.380 7.364 0.016 0.321 0.116 4 0.299 7.601 0.723 3.214 0.014 0.010 2.060 2.9.603 0.316 0.136 4 0.299 7.601 0.723 3.214 0.014 2.0.00 29.908 2.102 0.368 0.143 4 0.299 7.601 0.723 3.214 0.014 2.000 29.908 0.147 4 0.299 7.601 0.723 3.214 0.014 2.000 29.908 0.147 1 0.09 0	33.58 Drift at yield load, Ayett			_	33.58	32	1.458	37.029	5.065	22.528	0.466	0.631	1.208	1.638	3.473	0.608	0.120	3559
38 3.071 78.007 7.308 3.1043 1.4975 6.067 2.347 0.411 0.116 41 3.367 9.911 7.460 33.184 2.143 2.906 7.604 10.310 0.355 0.147 41 3.367 9.911 7.460 33.184 2.143 2.906 7.604 10.310 0.355 0.147 41 0.359 7.601 0.733 3.3144 0.143 2.906 7.604 10.310 0.355 0.147 ryck Megative stroke Positive stroke Area , Kip-in. Unit load , initial in Kips in Kip in Kip D 0 0 <td>2.989 Proportional limit,</td> <td>Proportional limit,</td> <td>Kip/fi.</td> <td>_</td> <td>0.374</td> <td>35</td> <td>2.051</td> <td>52.104</td> <td>6.105</td> <td>27.154</td> <td>0.786</td> <td>1.066</td> <td>2.332</td> <td>3.161</td> <td>2.976</td> <td>0.521</td> <td>0.120</td> <td>3892</td>	2.989 Proportional limit,	Proportional limit,	Kip/fi.	_	0.374	35	2.051	52.104	6.105	27.154	0.786	1.066	2.332	3.161	2.976	0.521	0.120	3892
41 3.607 9.3.011 7.400 33.134 2.145 2.906 7.004 10.310 2.102 0.335 0.147 crycle Negative stroke Positive stroke Area, K(p-h). Dimit on 0 0	13.296 0.4v _{peak}	0.4vpauk	KN/m		5.453	38	3.071	78.007	7.208	32.063	1.580	2.143	4.475	6.067	2.347	0.411	0.136	4226
44 0.139 7.001 0.125 5.114 0.034 0.046 2.100 2.905 2.102 0.366 0.148 cycle Negritre stroke Positive stroke Negritre stroke Negritre stroke Negritre stroke Area, K(p-in, Unit load, initial in KDp in KDp in KN mem KN mem KN megative positive unit load, initial in KDp in KDp in KN mem KN megative positive unit load, 1 0.00 0	0.626 Drift at prop. limit,		,ti		0.626	4:	3.697	93.911	7.460	33.184	2.143	2.906	7.604	10.310	2.026	0.355	0.147	4560
Cycle Negative stroke Positive stroke Negative stroke Positive stroke Positive stroke Area, Klp-in. Unit load, initial m Kps in Kps m KN agentive agentive agentive agentive 1 0	15.89 <u>A(0)</u> 0.40 _{pat} mm 7.460 Thrit load at failma or <u>Wisch</u>	mm Alinta	mm Alinta		15.89	44	0.299	1007	0.725	3.214	0.054	0.040	22.000	29.908	2.102	0.308	0.248	8808
Crycle Negritive stroke Positive stroke Negritive stroke Area, Kip-in. Unit hadd initial in. K-9 0 <td>0.8v_mt KN/m</td> <td>0.8v_+ KNm</td> <td>KN/m</td> <td></td> <td>3.609</td> <td></td>	0.8v_mt KN/m	0.8v_+ KNm	KN/m		3.609													
Cycle Negative stroke Positive stroke Positive stroke Area, Kip-in. Unit load, initial in in Kp 0	3.697 Define at feelbran A.c. in.	Daift at failure Acc	.E		3.697													
Cycle Negative stroke Positive stroke Negative stroke Area, Kip-in. Unit hoat initial in Kkps in Kkps in KN agative positive stroke Area, Kip-in. Unit hoat initial in Kkps in Kps in KN agative positive accord <	93.91 Dette of relative - Section				93.91													
cycle Negative stroke Positive stroke Positive stroke Area, Klp-in. Unit load, initial in Ktps in Ktps in Ktps initial initia initial initial <	4.777 Shear modulus, G	_	Kip/in.	_	4.777													
Cycle Negative stroke Positive stroke Negative stroke Area, K(p-in, Unit Ioad, initial in KDps in KDp in KDv D 0	0.837 @0.4Fpeak	- '	- '		0.837													
Cycle Negative stroke Positive stroke Positive stroke Positive stroke Fourity and Lunit January Lunit Janu	Kup-ft. 7.604 Work until failure per Kup-ft./ft. KN-m 10.310 until leneth KN-m/m	Work until faihure per unit lensth	_		0.951													
initial in Kips mm KN mem KN mem KN mem positive positive positive positive positive legative positive legative positive positive legative positive legative positive legative legative positive legative legative positive legative legative <thload< th=""> legative <thlegative< th=""> <thlegative< th=""> <th< th=""><th>1.873 Unit load @ 32 in. Kips/ft.</th><th>Unit load @ 32 in. Kips/ft.</th><th>L</th><th>Č</th><th>.234</th><th>cycle</th><th>Negative</th><th>stroke</th><th>Positive</th><th>stroke</th><th>Negative</th><th>stroke</th><th>Positive</th><th>stroke</th><th>Area,</th><th>Kip-in.</th><th>Unit load</th><th>l, KN/m</th></th<></thlegative<></thlegative<></thload<>	1.873 Unit load @ 32 in. Kips/ft.	Unit load @ 32 in. Kips/ft.	L	Č	.234	cycle	Negative	stroke	Positive	stroke	Negative	stroke	Positive	stroke	Area,	Kip-in.	Unit load	l, KN/m
0 0	8.331 (8.13 mm) KN/m	KN/m	_	m	417	initial	.si	Kips	.ei	Kips	uuu	KN	uuu	KN	negative	positive	negative	positive
1 -0.097 -0.770 0.098 0.851 -2.461 -3.423 2.497 3.785 0.037 0.042 -1.404 7 -0.147 -1.052 0.156 1.213 -3.736 -4.678 3.955 5.396 0.046 0.093 -1.919 14 -0.190 -1.193 0.306 1.487 -5.750 5.395 0.061 0.065 -0.331 21 -0.190 -1.198 0.419 2.334 -10.170 0.383 0.066 0.066 0.066 0.066 -1.719 21 -0.400 -3.148 0.419 2.151.10 15.969 13.853 0.366 -5.171 22 -0.300 -3.436 0.312 -1.6170 -2.0378 -1.5610 12.31 0.566 5.171 23 -1.442 -5.036 -1.5110 37.950 2.313 0.566 5.171 24 -0.306 3.122 7.161 37.930 2.3337 2.576 2.948 -8.907 <td>in. Kips/ft.</td> <td>Kips/ft.</td> <td>_</td> <td>0</td> <td>311</td> <td></td> <td>0</td>	in. Kips/ft.	Kips/ft.	_	0	311		0	0	0	0	0	0	0	0	0	0	0	0
7 -0.147 -1.052 0.156 1.213 -3.736 -4.678 3.955 5.396 0.046 0.059 -1.919 14 -0.199 -1.193 0.006 1.487 -5.750 5.332 6.616 0.061 0.068 -2.338 21 -0.199 -1.142 0.419 2.034 -10170 -9.550 5.332 6.616 0.061 0.068 -2.338 21 -0.460 -3.345 0.049 5.033 3.034 -10.17170 -9.550 5.131 3.951 7.311 29 -0.802 -3.345 0.513 1.5464 5.337 2.566 -5.131 38 -1.422 -4.883 1.494 5.247 -50.090 -5.161 2.171 9.3596 6.511 7.007 -10.827 38 -2.004 -5.966 2.1719 37.950 2.1337 2.576 2.948 -9.073 38 -2.004 -5.903 7.411 -76.033 -3.1102 7.911 </td <td></td> <td>KNim</td> <td></td> <td>_</td> <td>4.536</td> <td>1</td> <td>-0.097</td> <td>-0.770</td> <td>0.098</td> <td>0.851</td> <td>-2.461</td> <td>-3.423</td> <td>2.497</td> <td>3.785</td> <td>0.037</td> <td>0.042</td> <td>-1.404</td> <td>1.552</td>		KNim		_	4.536	1	-0.097	-0.770	0.098	0.851	-2.461	-3.423	2.497	3.785	0.037	0.042	-1.404	1.552
14 -0.199 -1.126 0.206 1-487 -5.50 5.532 6.616 0.061 0.068 -2.358 21 -0.400 -2.148 0.419 2.334 -10.170 -9.552 10.645 10.383 0.346 0.407 -3.977 25 -0.506 -3.835 0.636 3.712 -20.378 -15.146 11.5160 15.569 13.532 0.407 -3.977 29 -0.802 -3.055 -15.146 -12.610 15.568 13.532 0.467 -3.977 29 -0.802 -3.456 0.836 -3.712 -2.0.378 -15.568 13.537 0.546 0.703 -5.568 38 -2.006 3.122 7.411 -7.6709 -3.120 7.796 3.122 3.481 -10.827 38 -3.000 -7.006 3.122 7.411 -7.6710 3.5320 2.038 7.376 -12.738 41 -3.311 -6.580 4.063 7.371 3.5320 2.038 7.376 -10.738 41 -3.311 -6.5099 -	Kips 3.903 Unit load @ .96 in. Kips/ft.	_	Kips/ft.		0.488	7	-0.147	-1.052	0.156	1.213	-3.736	-4.678	3.955	5.396	0.046	0.059	-1.919	2.213
21 -0.400 2.148 0.419 2.334 -10.170 -9.552 10.645 10.383 0.346 0.407 -3.917 25 -0.566 2.335 0.036 15.146 -12.610 15.969 13.652 0.407 -3.917 29 -0.566 2.335 0.0365 17.12 -2.0.378 -15.569 13.652 0.407 -5.916 29 -0.802 3.172 -2.0.378 -15.546 -12.610 15.969 13.652 0.646 0.703 -6.266 31 -1.422 1.494 5.717 -2.0378 -15.6402 2.3123 2.576 0.703 -6.266 38 -2.004 -5.956 2.0171 2.56402 2.32.29 2.796 3.520 2.038 7.376 -12.730 41 -3.311 -6.580 4.083 7.941 -64.104 -31.048 103.718 35.320 2.038 7.376 -12.733 41 -3.311 -6.580 2.033 <t< td=""><td>17.360 (24.38 mm)</td><td>(24.38 mm)</td><td>KN/m</td><td>_</td><td>7.120</td><td>14</td><td>-0.199</td><td>-1.293</td><td>0.206</td><td>1.487</td><td>-5.067</td><td>-5.750</td><td>5.232</td><td>6.616</td><td>0.061</td><td>0.068</td><td>-2.358</td><td>2.713</td></t<>	17.360 (24.38 mm)	(24.38 mm)	KN/m	_	7.120	14	-0.199	-1.293	0.206	1.487	-5.067	-5.750	5.232	6.616	0.061	0.068	-2.358	2.713
25 -0.566 -2.335 0.029 3.005 -15.146 -12.610 15.959 15.653 0.4488 0.566 -5.171 29 -0.801 -3.436 0.836 3.712 -20.378 -15.285 21.237 16.513 0.646 0.703 -6.268 31 -1.421 -3.436 0.836 3.712 -20.378 -15.285 21.237 16.513 0.646 0.703 -6.268 31 -1.421 -5.936 1.098 6.274 -5.0900 -3.112 2.570 2.152 3.461 -10.780 35 -2.004 -5.936 1.083 7.364 2.571 7.007 -12.780 36 -3.011 -5.936 1.083 7.341 -51.048 103.718 35.320 2.038 7.376 -12.733 41 -3.311 -6.580 4.083 7.941 -64.104 -31.048 103.718 35.320 2.038 7.376 -12.733 41 -3.311 -6.580	Unit load @ 1.6 in.		Kips/ft.		0.664	21	-0.400	-2.148	0.419	2.334	-10.170	-9.552	10.645	10.383	0.346	0.407	-3.917	4.258
1.1 1.1	25:045 (40:04 mm)	1	KNI		1.60.6	67 67	0.000	-2.855	0.029	C00.5	-10.140	-12.010	200.CI	16.052	0.488	00000	1/1.6-	160.0
-2.04 -5.95 2.08 6.274 -50.909 -26.402 33.299 27.906 3.122 3.481 -10.827 -3.020 -7.006 3.122 7.411 -76.703 -31.162 79.311 32.964 6.571 7.007 -12.780 -3.311 -6.980 4.083 7.941 -84.104 -31.048 103.718 35.320 2.038 7.376 -12.733		Hel. D lat				18	1 472	200 7	1 404	5 347	26100	012.10	120.22	722.20	ATS 0	3 048	2007	0 571
-3.020 -7.066 3.122 7.411 -76.703 -3.1162 79.311 32.964 6.571 7.007 -12.780 -3.021 -6.980 4.083 7.941 -84.104 -31.048 103.718 35.320 2.038 7.376 -12.733	initial	mitial				32	2004	910 5-	2 008	9274	601-05-	207 907	000 25	100.02	3152	3 481	10.801-	11444
1. 557.21- 7.376 7.376 103.718 35.320 2.038 7.376 -12.735	units negative positive					8	-3 020	-7.006	3.122	7411	-76.703	-31.162	115.02	32,964	6.571	7.007	-12.780	13.510
	-5.934					4	-3311	-6.980	4.083	7.941	-84.104	-31.048	103.718	35.320	2.038	7.376	-12.733	14.485
	-26.394																	
	-0.742																	
	-10.824																	
	-1.243																	
	mm -31.57 35.58 in -3.311 4.083																	

Form No. M410 = © 2011 APA – The Engineered Wood Association = www.apawood.org

average 7.473 33.242

positive 7.941

negative -7.006 -31.163

units Kips KN

Fsis

8'IS

Ultimate parameters

10b	For total length CTIPEE codic fact		Specimen 10b	Per unit length CUREE cyclic feet	length orlic test	Specimen	10b	For total length	length									
<u> </u>	96in. 2.4		Effective wall length	96in.	2.44m	Effective wall length	l length	96in.	2.44m									
ſ	Time:	Date:	te:	Time:		cycle	avg. displacement	acement	avg.	load	work per cycle	r cycle	cumulative work	ive work	cyclic	cyclic stiffness	damping	line
			EEEP Parameters	units	initial	initial	.ei	mm	Kips	KN	Kip-ft.	KN·m	Kip-ft.	KN·m	Kip/in.	KN/mm	ratio	number
	_	6.976 I	Peak unit load, v _{reak}	Kip/ft.	0.872		000	0 0	0	0	0 00	0 0	000	0 00	000 01	200 1		EI
				HINH H	071.01	- 1	0.154	010 2	1 464	4.784 A 512	0.010	0.015	0.046	0.060	0.404	C697	60T-0	1400
Drift at peak load, Δ_{peak}			Drift at capacity, Δ_{peak}	The second	10 02	, I	9000	5.231	1 778	7001	0.018	2000	201.0	0 142	8 635	1 512	0.006	2001
	Ì			Kib/ft.	0.741	21	0.414	10.527	2.721	12.103	0.065	0.068	0.236	0.319	6.563	1149	0.110	4202
			r tead until load, V _{yield}	KN	10.816	25	0.625	15.867	3.429	15.253	0.116	0.158	0.451	0.611	5.488	196'0	0.104	2001
	îi.	0.924			0.924	29	0.841	21.354	4.003	17.807	0.175	0.237	0.801	1.086	4.760	0.834	0.099	5801
DTITE at yheld load, Δ_{yidd}	Ē	23.48 DT	Drift at yield load, Δ_{yidd}		23.48	32	1.491	37.860	5.373	23.897	0.519	0.704	1.494	2.025	3.603	0.631	0.124	6402
Proportional limit,	Kips 2.	2.791	Proportional limit,	Kip/ft.	0.349	35	2.125	53.981	6.261	27.849	0.836	1.133	2.711	3.675	2.945	0.516	0.120	7002
		12.412	0.4vpat	KN/m	5.090	38	2.873	72.967	6.976	31.031	1.653	2.241	4.978	6.748	2.443	0.428	0.156	7602
Drift at prop. limit,	ii 0		Drift at prop. limit,	,ei	0.435	41	3.700	93.984	6.200	27.576	2.153	2.919	8.190	11.104	1.691	0.296	0.180	\$203
			$\Delta @ 0.4 v_{purk}$	mm	11.04	44	0.299	7.601	0.723	3.214	0.034	0.046	22.060	29.908	2.102	0.368	0.248	\$808
Failure load or 0.8F _{peak}	Kips 6.	6.200 U	Unit load at failure or ^ ^	Kip/fi.	0.775													
1	1		U.O.V puek	THIN H	50CTT													
Drift at failure, Antena		D0/7	Drift at failure, $\Delta_{\rm failure}$	ei soo	93.00													
Flastic stiffnass K K	-	6413	Shear modulus G	Kindin	6413													
	KN/mm	1.123	@0.4F	KN/mm	1.123													
1	-	-	Work until failure ner	Kin-ft/ft	1 0.04													
Work until failure K	KNm II.		von unit length	KN-m/m	4.554													
		2.293	Unit load @ 32 in.	Kips/ft.	0.287	cycle	Negative stroke	stroke	Positive stroke	stroke	Negative stroke	e stroke	Positive stroke	stroke	Area	Area, Kip-in.	Unit load, KN/m	l, KN/m
		10.201	(8.13 mm)	KN	4.184	initial	.si	Kips	.ei	Kips	mm	KN	mm	KN	negative	positive	negative	positive
Load @ .48 in.	Kips 2.	2.942	Unit load @ .48 in.	Kips/ft.	0.368		0	0	•	0	•	0	•	0	•	•	0	0
	KN 13.	13.084	(12.19 mm)	KN/m	5.366	1	-0.100	-1.088	0.099	1.062	-2.530	-4.838	2.517	4.725	0.054	0.053	-1.984	1.938
Load @ .96 in.]	Kips 4.	4.254 1	Unit load @ .96 in.	Kips/ft.	0.532	7	-0.156	-1.431	0.152	1.498	-3.970	-6.363	3.868	6.662	0.071	0.068	-2.610	2.732
	KN 18.	18.922	(24.38 mm)	KN/m	7.760	14	-0.208	-1.718	0.204	1.838	-5.283	-7.640	5.179	8.173	0.081	0.086	-3.133	3.352
Load @ 1.6 in.	Kips 5.		Unit load @ 1.6 in.	Kips/ft.	0.691	21	-0.411	-2.600	0.418	2.842	-10.442	-11.563	10.612	12.643	0.438	0.501	4.742	5.185
+	-	24.577	(40.64 mm)	KNim	10.079	25	-0.621	-3.293	0.629	3.565	-15.763	-14.649	15.972	15.856	0.617	0.676	-6.008	6.503
Ductility factor, µ	4	4.01	Carl @Vpeek		0.156	29	-0.823	-3.845	0.858	4.161	-20.904	-17.104	21.803	18.510	0.722	0.887	-7.014	7.591
						32	-1.467	-5.177	1.514	5.568	-37.274	-23.028	38.445	24.767	2.907	3.187	-9,444	10.157
		initial				35	-2.106	-6.058	2.144	6.465	-53.495	-26.944	54.468	28.754	3.587	3.795	-11.050	11.792
EEEP Parameters u	units neg	negative p	positive			38	-2.535	-6.495	3.211	7.458	-64.379	-28.888	81.554	33.174	2.689	7.424	-11.847	13.605
			6.155			41	-3.979	-5.901	3.421	6.498	-101.072	-26.249	86.896	28.903	8.954	1.467	-10.765	11.853
			27.379															
N .			0.769															
4			0.045															
		-0.902	0.947															
	Ì		CO.#2															
			17475															
-	-10 mm	/0'101-	80.90															

Evaluation of Force Transfer Around Openings – Experimental and Analytical Findings

55

Form No. M410 = $\ensuremath{\mathbb{C}}$ 2011 APA – The Engineered Wood Association = www.apawood.org

average 6.976 31.032

positive 7.458

negative -6.495 -28.889

units KN

Ultimate parameters $F_{\rm SLS}$

\$T\$

33.176

Specimen 11a	For total length		Specimen 11a	Η	Per unit length		Specimen	lla	For total length	ength									
	CUREE cyclic test				Š.				ŝ	clic test									
Effective wall length	96in.	2.44m	Effective wall length		96in. 2.4	2.44m Eff	Effective wall length	ength .	+	2.44m									
	Time:		Date:	╅	+	+	cycle	avg. displacement	acement	pà۲	Load	WOLKP	work per cycle	CUIDUIADVE WOLK	Ve WOLK	cyclic suffices	utiness	damping	une
EEEP Parameters	unts	mtal	EEEP Parameters	ť		_	Initial	si '	mm	Кр:	S.	Kip-it.	RN:B	Kıp-it	KNm	Kup/m.	KN/mm	ratio	number
Peak load, F _{peak}	Sdi V A	0.48U	Peak unit load, v _{peak}		NIPH. U.S.	012.0	-	0000	0 3 5 1 6	0.660	0 0 C	0.000	0 005	0.000	0 005	6 600	1711	0117	9 5
	i.	3 768			T	3 768		0.153	3 801	0.887	3 044	0.007	0100	0.030	0100	P02.5	1015	0100	780
Drift at peak load, Δ_{peak}	um	12.20	Drift at capacity, Δ_{peak}		÷	E	14	0.206	5 222	1.103	4 906	0.011	0.015	0.066	0.089	5.366	0.940	0.093	1557
2 Prof 1	Kips	5.540	a bart dan bart		Kip/ft. 0.6	0.692	21	0.419	10.645	1.871	8.322	0.038	0.052	0.144	0.195	4.464	0.782	0.094	2335
Tield Joad, Fyield	RN	24.640	n leua unnt lona. V _{yield}	-	-	10.105	25	0.633	16.068	2.562	11.397	0.077	0.104	0.279	0.379	4.049	0.709	160.0	2779
	ij.	1.386				1.386	29	0.846	21.500	3.151	14.015	0.123	0.167	0.516	0.699	3.720	0.651	0.088	3223
Drift at yield load. Δ_{yield}	uu	35.21	Drift at yield load, Δ_{yield}		÷	35.21	32	1.460	37,313	4.408	20.006	0.308	0.540	1.036	1405	3.060	0.536	0.115	3557
Dronortional limit	Kins	2 502	Dronortional limit			10 304	35	2 044	51 023	5 205	23 553	0.680	0 0.02	2 007	1.7.2	105 0	0.454	0.1.0	3800
0.4F	KN	11 528	0.4v		KN/m 4.7	4.738	38	3 1 1 8	101 02	6 210	009 20	PC2	1 705	1 202	5154	1 002	075.0	0 131	4004
Drift at prop. limit.	.e	0.640	Drift at prop. limit.		_	0.649	17	3.768	95.706	6.480	28.821	1.735	2.352	6.335	8 588	1.723	0.302	0.136	4558
∆@0.4F	uu	16.49	∆@0.4v		÷	16.49	4	0.299	7.601	0.723	3.214	0.034	0.046	22.060	29.908	2.102	0.368	0.248	\$808
1000	Kips	6.480	Unit load at failure or			0.810													
FAILURE JOBIL OF U.S.F peak	KN	28.821	0.8v _{eek}			11.820													
	.đ	3.768				3.768													
DUIT AT IMPLIE, Argina	uuu	95.71	LINT AT IMPURE, African	-	÷	95.71													
Elastic stiffness, K.	Kip/in.	4.010	Shear modulus, G		_	4.010													
@0.4F	KN/mm	0.702	$@0.4F_{mak}$		_	0.702													
Work until fuilurs	Kip-ft.	6.335	Work until failure per		Kip-ft./ft. 0.7	0.792													
א טעננע נאנוערפ	KN·m	8.588	unit length	-	_														
Load @ .32 in.	Kips	1.514	Unit load @ 32 in				cycle	Negative stroke	stroke	Positive stroke	stroke	Negativ	Negative stroke	Positive stroke	stroke	Area, Kip-in.	Kip-in.	Unit load, KN/m	l, KN/m
(8.13 mm)	KN	6.736	(8.13 mm)				initial	.si	Kips	.ei	Kips	mm	KN	mm	KN	negative	positive	negative	positive
Load @ .48 in.	Kips	2.068	Umit load @ .48 in.	_	Kips/ft. 0.2	0.258		0	0	0	0	0	0	0	0	0	0	0	0
(12.19 mm)	KN	9.197	(12.19 mm)			3.772	1	-0.105	-0.650	0.093	0.670	-2.670	-2.889	2.362	2.978	0.034	0.031	-1.185	1.221
Load @ .96 in.	Kips	3.396	Unit load @ .96 in.	_	_	0.424	1	-0.156	-0.858	0.150	0.915	-3.962	-3.818	3.820	4.071	0.038	0.045	-1.566	1.669
(24.38 mm)	KN	15.104	(24.38 mm)	Ø		6.194	14	-0.207	-1.067	0.204	1.138	-5.258	-4.748	5.187	5.064	0.049	0.055	-1.947	2.077
Load @ 1.6 in.	Kips	4.680	Unit load @ 1.6 in.			0.585	21	-0.418	-1.804	0.420	1.938	-10.617	-8.025	10.673	8.618	0.303	0.332	-3.291	3.534
(40.64 mm)	KN	20.815	(40.64 mm)	R	+	8.536	25	-0.623	-2.445	0.642	2.679	-15.829	-10.877	16.307	11.917	0.436	0.512	4.461	4.887
Ductility factor, µ		2.72	Can @Vpack		1.0	0.136	29	-0.829	-2.997	0.864	3.304	-21.062	-13.332	21.938	14.698	0.561	0.663	-5.467	6.028
							32	-1.445	-4.302	1.493	4.694	-36.700	-19.135	37.925	20.877	2.247	2.517	-7.847	8.562
		ini.	initial				35	-2.062	-5.165	2.026	5.426	-52.377	-22.973	51.468	24.134	2.921	2.698	-9.421	9.897
EEEP Parameters	units	negative	positive				38	-3.069	-6.125	3.167	6.295	-77.950	-27.244	80.432	28.000	5.683	6.683	-11.173	11.483
ц ц	Kips	-5.576	5.503				41	-3.979	-6.635	3.557	6.324	-101.064	-29.514	90.348	28.128	5.806	2.463	-12.104	11.535
* yield	KN	-24.801	24.479																
A.L.A.	Kips/ft.	-0.697	0.688																
Fact.	KNm	-10.171	10.039																
A	,ej	-1.473	1.299																
Jane	mm	-37.41	33.00																
∆ (uhave	đ	-3.979	3.557																
	mm	-101:00	90.35																
Ultimate narameters	units	กคราทับค	notitive average	46															
-	Kips	-6.635	6.324 6.480	0															
Fsts	KN	-20.516		2															
				Ī															

Form No. M410 = © 2011 APA – The Engineered Wood Association = www.apawood.org

Specimen 11b	For total length	Γ.	Specimen 11b	Per unit length	Γ	Specimen	116	For total length	length									
	E cy			CUREE of				CUREE cyclic test	clic test									
Effective wall length	Н	2.44m E	Effective wall length	96in.	2.44m	Effective wall length	ll length	96in.	2.44m									
Date:	Time:		Date:	Time:		cycle	avg. displacement	acement	avg. I	load	work per cycle	r cycle	cumulative work	ve work	cyclic.	cyclic stiffness	damping	bne
EEEP Parameters		initial	EEEP Parameters	units	initial	initial	.si	mm	Kips	KN	Kip-ft.	KN·m	Kip-ft.	KN·m	Kip/in.	KN/mm	ratio	number
Peak load. F	Kips 5.	5.669	Peak unit load, V	Kip/ft.	0.709		0	0	0	0	0	0	0	0				n
		25.213	1	KNm	10.340	1	0.100	2.543	0.856	3.810	0.004	0.006	0.004	0.006	8.570	1.501	0.095	198
Drift at neak load A	.E	3.162	Drift at canacity A	.E	3.162	-	0.155	3.947	1.173	5.218	0.008	0.011	0.033	0.045	7.551	1322	0.086	1401
and more made in the second		\$0.32	Weder - Consulation on the second	mm	80.32	14	0.206	5.240	1.417	6.303	0.013	0.018	0.076	0.104	6.870	1.203	0.087	2801
Viald load E		4.897	Viald unit load w	Kip/ft.	0.612	21	0.418	10.618	2.161	9.613	0.046	0.063	0.170	0.230	5.170	0.905	0.098	4200
Park + mone more +	KN 21	21.781	Field a support summer support of	KN/m	8.932	25	0.634	16.096	2.725	12.121	0.086	0.117	0.326	0.442	4.301	0.753	0.095	5000
	ji G	0.997		ġ	0.997	29	0.842	21.391	3.192	14.196	0.132	0.179	0.585	0.793	3.790	0.664	0.094	5800
Drift at yield load, Δ_{yield}	ŕ		Drift at yield load, Δ_{pield}	mm	25.32	32	1.502	38.142	4.314	19.190	0.404	0.548	1.117	1.514	2.873	0.503	0.119	6400
Proportional limit.	Kips 2.	2.267	Proportional limit.	Kip/ft.	0.283	35	2.148	54.555	5.023	22.340	0.663	0.899	2.061	2.794	2.338	0.409	0.117	7000
0.4F mut	È	10.085	0.4v _{eat}	KN/m	4.136	38	3.162	80.321	5.669	25.213	1.304	1.767	3.822	5.182	1.793	0.314	0.139	7600
Drift at prop. limit,		0.461	Drift at prop. limit,	ii.	0.461	41	3.630	92.197	5.100	22.684	1.646	2.232	6.195	8.398	1.412	0.247	0.167	8201
$\Delta @0.4F_{park}$		11.71	$\Delta @ 0.4 v_{pack}$	mm	11.71	44	0.299	7.601	0.723	3.214	0.034	0.046	22.060	29.908	2.102	0.368	0.248	8808
Faihure load or 0.8F	Kips 4.	4.999	Unit load at failure or	Kip/ft.	0.625													
L		22.254	0.8Vpat	KNM	9.118													
Drift at failure Access	ці 4	4.152	Drift at failure Acc.	,ri	4.152													
		105.45		mm	105.45													
Elastic stiffness, K.	_	4.946	Shear modulus, G	Kip/in.	4.946													
@0.4Fme	_	0.866	@0.4Fpack	KN/mm	0.866													
Work until failure	Kip-fi. 6.	6.195	Work until failure per	Kip-ft./ft.	0.774													
1 2 2 1	+	8.398	unit length	KN-m/m	3.444		Visit and a second	- Andrew		- Andrew	V		1.100 million				The first from the first first	1/4 (
		010		Dips/IL	199.0	rice.	AUDERAL		LUNIN	SU UKE	MineSau	AND DEC	LUXINA	SULUKE	THE	, Nip-III.	UBII 1030	L' NIMIT
(mm c1.8)		6.U8U	(uuuu cr.s)	HINH I	c16.6	Initial	si	sdiry	ei i	sdiry	mm	NN	uuu	NN	Degative	positive	Degative	positive
Load @ .48 in.		2.323	Unit load @ .48 in.	Kips/ft.	0.290		0	0	0	0	0	0	0	0	0	0	0	0
(12.19 mm)	KN 10	10.334	(12.19 mm)	KN/m	4.238	-	-0.107	-0.896	0.093	0.817	-2.718	-3.984	2.367	3.636	0.048	0.038	-1.634	1.491
Load @ .96 in.	Kips 3.	3.391	Unit load @ .96 in.	Kips/ft.	0.424	5	-0.159	-1.184	0.152	1.162	-4.031	-5.268	3.863	5.168	0.054	0.058	-2.160	2.119
(24.38 mm)		15.084	(24.38 mm)	KN/m	6.186	14	-0.210	-1.430	0.203	1.404	-5.324	-6.360	5.156	6.246	0.067	0.065	-2.608	2.562
Load @ 1.6 in.	Kips 4.	4.418	Unit load @ 1.6 in.	Kips/ft.	0.552	21	-0.419	-2.188	0.418	2.135	-10.630	-9.730	10.607	9.496	0.378	0.380	-3.990	3.894
(40.64 mm)		19.651	(40.64 mm)	KN/m	8.059	25	-0.626	-2.754	0.641	2.696	-15.898	-12.249	16.294	11.993	0.512	0.541	-5.023	4.918
Ductility factor, µ	at.	4.22	Carl @Vpeak		0.139	29	-0.835	-3.200	0.850	3.183	-21.201	-14.235	21.580	14.157	0.622	0.612	-5.838	5.806
						32	-1.473	-4.229	1.531	4.400	-37.407	-18.811	38.877	19.570	2.370	2.582	-7.714	8.026
		initial	al			35	-2.111	-4.838	2.185	5.207	-53.609	-21.521	55.502	23.159	2.892	3.144	-8.826	9.498
EEEP Parameters	units neg	negative	positive			38	-3.179	-5.438	3.145	5.899	-80.752	-24.189	79.891	26.238	5.491	5.332	-9.920	10.760
4	┝	-4.636	5.158			41	-4.247	-4.256	4.141	5.647	-107.874	-18.932	105.192	25.117	5.176	5.750	-7.764	10.301
F yield	KN -20	-20.619	22.943															
;		-0.579	0.645															
bieł		-8.456	9.409															
		-0.885	1.109															
70000		-22.47	28.16															
Ante-		-4.162	4.141															
	mm -10	-105.71	105.19															

Form No. M410 = © 2011 APA – The Engineered Wood Association = www.apawood.org

average 5.669 25.215

positive 5.899 26.240

negative -5.438 -24.190

units KN

 $\mathbb{F}_{\mathrm{SLS}}$

S. TS

Ultimate parameters

Per unit length CUREE cyclic test 96in. 2.44m 71ime: nuits initial units 2.004 KM/w 20.204
29.249 1 3.377 7 8.5.796 23 1.768 24 1.768 24 0.936 29 0.936 29 0.802 38 11.609 38 1.602 38 1
0.676 cycle 9.861 initial
0.852 12.433
-
1.658 21 24.189 25
0.151 29
38
17

average 16.034 71.324

positive 14.985 66.657

negative -17.083 -75.990

units Kips

F_{sus}

07T	F OF TOTAL LENGTH		Specimen 12b	rer unit i		specimen	07T	F OF TOTAL JEDGID										
	CUREE cyclic test			CUREE cyclic test				CUREE cyclic test	sclic test									
	96in.	2.44m	Effective wall length	96in.		Effective wall length	ll length	96in.										
	Time:		Date:	Time:		cycle	avg. displacement	lacement	рò	load	work per cycle	er cycle	cumulative work	ive work	cyclic	cyclic stiffness	damping	line
	units	initial	EEEP Parameters	units	initial	initial	.si	mm	Kips	M	Kip-ft.	KNin	Kip-ft.	KNin	Kip/in	KN/mm	ratio	number
	Kips	15.009	Peak unit load, v _{peak}	Kip/fi.	1.876	-	0.00	0	0	0	0 00	0 000	0 000	0 0	007.000	202.1	2010	13
	NT4	007.00		ELVIE -	0/0/7		0.050	107.7	0/07	1/0.01	+10.0	510.0	+10.0	410.0	201-07		2010	1900
Drift at peak load, Δ_{peak}		07.70 06 01	Drift at capacity, Δ_{peak}	4	66.01	- 2	C+110	120.0	2000	01-1-1	070.0	C 50.0	701.0	600 V	100.77	0140	001.0	6601
	Kine	12.025		Kin/fi	1 600	1	161.0	0.720	6 121	140.11	0.147	0100	0 538	017.0	15 000	+cn.c	0110	4100
	KN	080 23	Yield unit load, v _{yield}	KNim	23,778	17	0.582	14 038	21712	305 75	772.0	0376	1 047	1 420	90121	00000	0117	4000
1	-	0100		TT A TT	011100	67	0000	090.00	0000	200.04	0000	2020	0001	1221	114.11	1 000	1110	00023
Drift at yield load, Δ_{viold}	Ħ	CT8.0	Drift at yield load, Δ_{vield}	Ħ	CI8.0	5	06/70	000.02	5.998	670.0H	674-0	790.0	769.1	1007		2661	001.0	66/0
	an a	C0.07		mm	C0.02	25	8/ C T	000.05	607.71	105.10	971	100.1		508.4	0.880	0001	961.0	6650
	Kips	0.003	Proportional limit,	Kup/tt.	00//0	35	1.950	49.025	14.214	577.50	2.100	2.855	0.012	\$06.8	5/5/	167.1	0.147	6660
	KN	26.703	0.4Vpauk	KNM	10.951	38	2.562	65.082	13.859	01.047	2.842	3.853	10.971	14.874	5.033	0.986	0.151	7589
Drift at prop. limit,	ji	0.374	Drift at prop. limit,	,ej	0.374	41	3.422	86.911	15.009	66.758	4.330	5.871	17.195	23.312	4.517	0.791	0.161	\$203
	mm	9.51	$\Delta @ 0.4 v_{pack}$	mm	9.51													
Dailwea load or 0.00	Kips	15.009	Unit load at failure or	Kip/ft.	1.876													
꼝	KN	66.758	$0.8v_{emb}$	KN/m	27.378													
	ġ	3.422		ġ	3.422													
Dufft at failure, Δ_{bbins}	mm	16.98	Drift at failure, $\Delta_{\rm failure}$	mm	86.91													
Elastic stiffness, K.	Kin/in.	16.038	Shear modulus, G	Kin/in.	16.038													
	KN/mm	0.000	@0.4F	KN/mm	2 800													
1	E'm.A	17 105	Work until failure ner	Km. 0.10	0110													
Work until failure	KN-m	24 212 22	work until talute per unit lanath	KN-m/m	0260													
f	Kips	5.400	Unit load @ 32 in.	Kins/ft.	0.675	cvcle	Negative stroke	e stroke	Positive stroke	stroke	Negative stroke	e stroke	Positive stroke	e stroke	Area.	Area, Kip-in.	Unit load, KN/m	L KN/m
-	KN	24.019	(8.13 mm)	KNm	9.850	initial).ei	Kips	.ei	Kips	mm	KN	mm	KN	Degative	positive	negative	positive
	Kins	6.871	Unit load @ 48 in.	Kios/ft.	0.859		•		•		0			•	-	0		0
-	KN	30.561	(12.19 mm)	KN/m	12.533	1	-0.092	-2.343	0.088	2.410	-2.332	-10.421	2.243	10.720	0.108	0.106	-4.274	4.396
	Kins	0.045	Unit load @ 96 in.	Kins/ft.	1.243	F	-0.138	-3153	0.148	3 304	-3 408	-14.025	3.757	14.785	0.126	0.171	-5.752	6.063
	NA	A20 MA	(D4 38 mm)	T'NI/	10140	2	0106	2 007	201.0	1 040	017.1	17 200	1 00.6	10 006	0.160	0.100	000 2	1 204
1	ALC: NO	007-14		TINE.	10.172	4 2	001-0-	100.0-	141.0	010.1		607-11-	066.4	000.01	601.0	001-0	060.1-	tory
	sdivi	178 23	Unit load (g) 1.0 III.	K NAM	107.00	17	292.01	120.0-	0.613.0	017 D	CCC.4-	202 22-	15 53.0	1407/7	926.1	10.1	203 21-	212.11
Ductilitar factor	i	4 10	C @w		0 161	e e	0 T6A	0 002	0.014	0100	10.157	20.550	10.062	40 A00	1 661	0101	16.772	16 AM
_		h	ind a D los		101.0	1	101-0-	0.00	0.00	901-2	101.61-	000.00	202.07	001.01	102.1	010	COO.01-	100.01
						32	767.1-	-12.059	C0+.1	9/571	-52.809	340.60-	57.205	000.00	070.0	0.80/	-21.900	086.22
		initial	ial			35	-1.846	-13.985	2.014	14.444	-46.899	-62.204	51.148	64.247	7.218	7.363	-25.510	26.348
EEEP Parameters	units	negative	positive			38	-1.988	-13.179	3.137	14.540	-50.490	-58.621	79.675	64.673	1.920	16.276	-24.041	26.523
F	Kips	-12.613	13.457			17	-2.827	-14.834	4.017	15.133	-71.798	-66.205	102.024	67.312	11.771	13.055	-27.151	27.605
	KN	-56.103	59.858															
	Kine/0	1577	1 60.2															
	PNIAS.	000 24	14 546															
1	ti vita	000.02-	210.12															
	=	10.01	24910		_													
1	un -	-19.9 1	04.14															
	Ħ	1787-	4.017															
	Control of	00 12,	102.02															

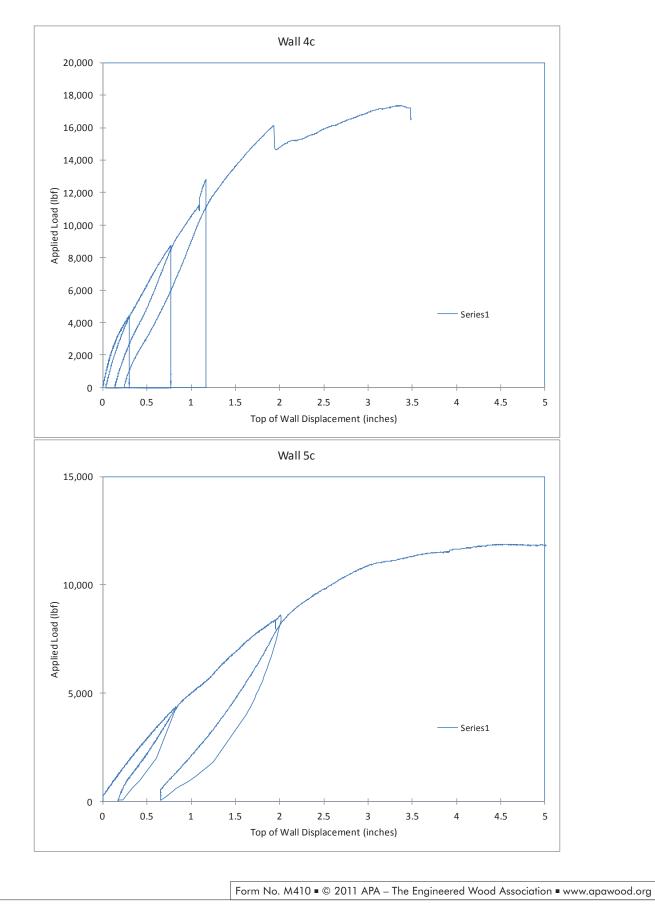
average 15.009

positive 15.133

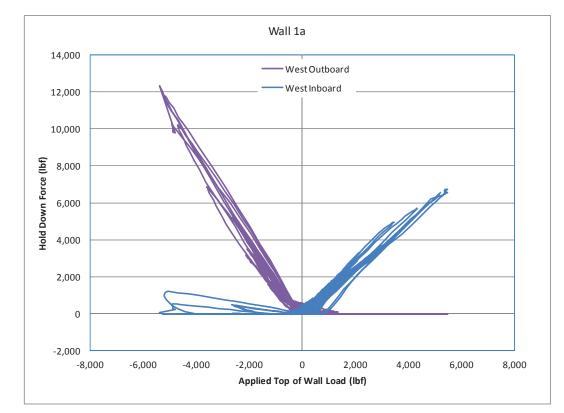
negative -14.884 -66.208

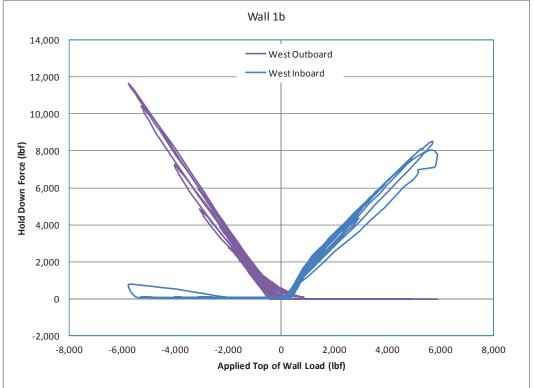
units Kips

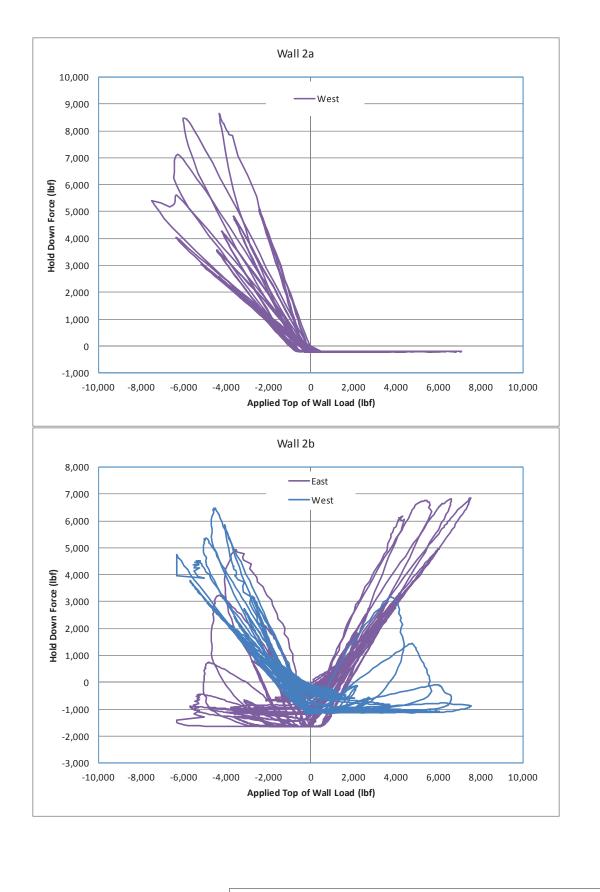
Fsts

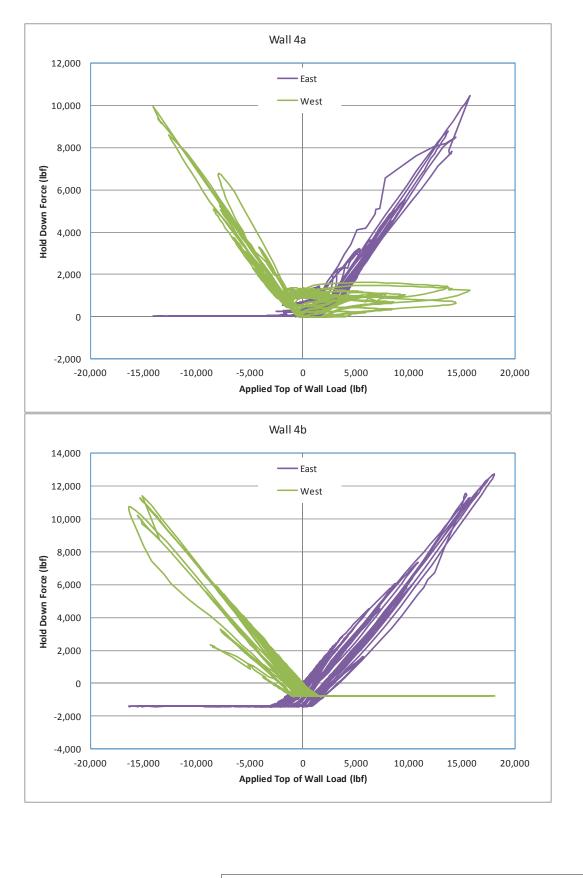

STS

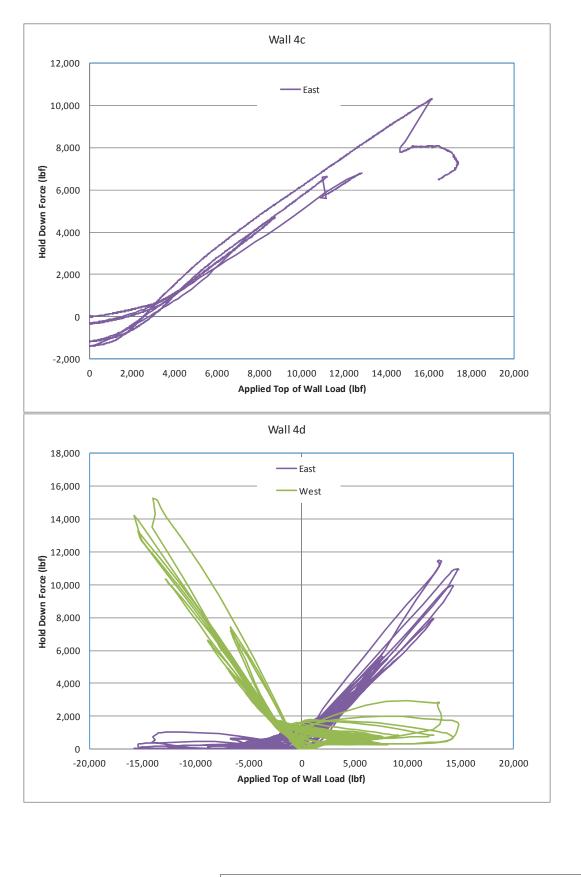
Ultimate parameters

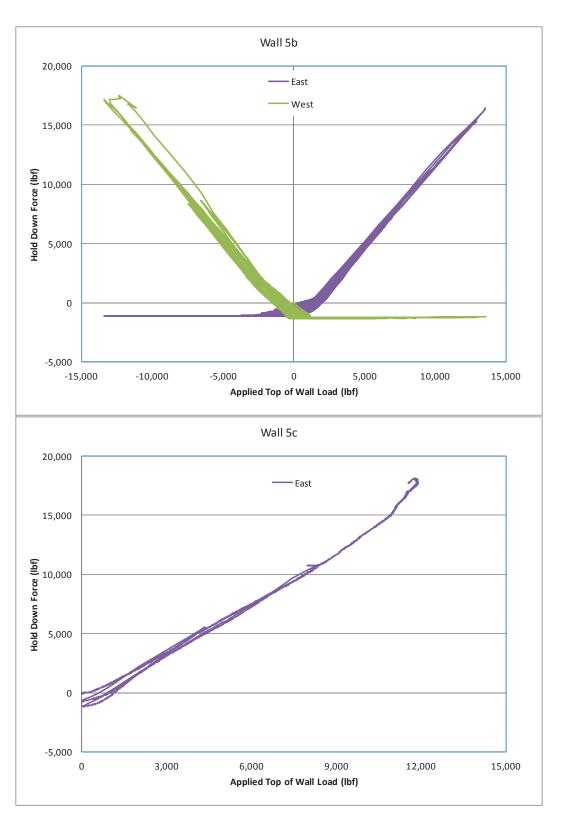

Evaluation of Force Transfer Around Openings – Experimental and Analytical	Findings
--	----------

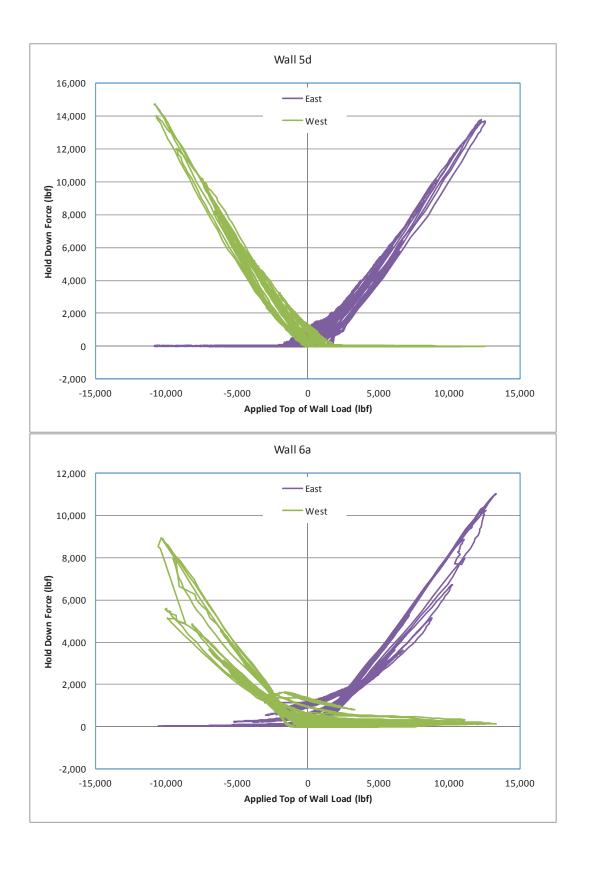

Ductility factor, µ	Median	1	4.35		7.67		7.87		6.58			5.68		15.54		11.66		11.01		7.97		7.21		7.40		9.16		
Ductility	з.		4.77	3.92	6.79	8.56	8.66	7.08	4.40	6.58	7.14	5.13	6.22	15.21	15.87	10.18	13.14	10.88	11.15	17.1	8.18	5.91	8.51	5.80	9.00	9.19	9.14	
	Median	Δu	0.040	710.0	0.0.0	070.0	0000	0.000		0.034		0,000	0.000	0000	000.0	10.04	100.0	0.024	Lon:n	0.032	0.004	0.030	0.000	0.044	5	0.000	0.000	
Detormation Capacity	۵ م	(in/in)	0.041	0.042	0.026	0.026	0.035	0.025	0.022	0.034	0.037	0.040	0.036	0.038	0.038	0.031	0.032	0.034	0.035	0.028	0.036	0.039	0.039	0.039	0.043	0.041	0.036	
Deformatio	*∿~	(in./in.)	0.042	0.042	0.021	0.024	0.037	0:030	0.026	0.035	0.039	0.043	0.039	0.037	0.041	0.031	0.026	0.038	0.042	0.031	0.035	0.043	0.036	0.037	0.043	0.043	0.042	
	Δυ.	(in./in.)	-0.041	-0.042	-0.030	-0.028	-0.032	-0.019	-0.018	-0.033	-0.035	-0.036	-0.034	-0.039	-0.034	-0.031	-0.037	-0.030	-0.029	-0.026	-0.037	-0.034	-0.041	-0.041	-0.043	-0.038	-0.029	
Strength/Stiffness	Median	4	0.010		0.003		0.004		0.005			0 007	0.007		0.002		0.003		0.003		0.004		0.006		0.006		0.004	
	Ā	(in./in.)	0.009	0.011	0.004	0.003	0.004	0.003	0.005	0.005	0.005	0.008	0.006	0.002	0.002	0.003	0.002	0.003	0.003	00.04	0.004	0.007	0.005	0.007	0.005	0.004	0.004	
strengm	4	(in./in.)	0.009	0.011	0.004	0.003	0.004	0.004	0.005	0.005	0.005	0.008	0.006	0.003	0.002	0.003	0.002	0.004	0.003	0.004	0.004	0.007	0.005	0.008	0.005	0.004	0.004	
	₫	(in./in.)	-0.009	-0.011	-0.004	-0.003	-0.004	-0.003	-0.005	-0.005	-0.006	-0.007	-0.006	-0.002	-0.002	-0.003	-0.002	-0.003	-0.003	-0.003	-0.004	-0.006	-0.004	-0.007	-0.004	-0.005	-0.004	
	Median	ď	1.07		1.07		0.98		0.88			0.83		1.26		1.26		1.07		1.05		1.14		1.29		0.91		
	ď		1.13	1.00	1.09	5	0.95	1.01	0.91	0.88	0.82	0.92	0.94	0.80	1.61	1.17	1.35	1.07	1.08	1.07	1.02	1.08	1.19	1.15	4	0.88	0.93	
Stiffness	K ^o u	(lbf/in.)	2,308	2,246	7,455	9,184	11,418	10,684	13,817	15,04	15,018	7,998	8,821	22,085	14,849	14,527	14,029	19,005	19,155	16,228	15,277	4,404	5,408	3,491	3,439	17,196	17,181	
	Å.	(lbfin.)	2,189	2,583	6,349	9,146	11,623	10,820	16,185	17,461	15,913	7,511	9,222	25,604	26,446	14,871	14,591	17,549	19,177	14,999	15,300	4,569	5,781	3,689	3,425	16,488	17,182	
	Å	(lbf/in.)	2,428	1,800	8,581	9,223	11,214	10,409	11,450	13,826	14,124	8,485	8,421	18,526	3,252	14,183	13,466	21,782	18,133	17,458	15,183	4,239	5,051	3,282	3,452	17,908	17,181	
	z	(lbfin.)	2,605	2,251	8,110	9,591	10,824	10,779	12,535	13,805	12,359	7,331	8,313	19,934	23,900	17,057	18,874	21,098	20,630	17,400	15,577	4,777	6,413	4,010	4,946	15,113	16,038	
	Ť,	(lbf/in.)	2,591	2,307	7,385	9,316	10,563	10,740	13,968	14,468	13,039	6,868	8,531	21,778	23,800	17,575	19,609	18,316	19,869	16,323	15,877	4,781	6,500	4,235	4,652	15,179	15,931	
	×,	(lbf/in.)	2,619	2,185	8,825	9,865	11,085	10,817	11,101	13,142	11,678	7,783	8,085	18,090	23,999	16,539	18,139	23,880	21,390	18,477	15,478	4,774	6,326	3,786	5,240	15,047	16,144	
	Median	a?		1 .		1.96		2.66		3.82		3.21		3.26		1.68		2.22		2.29		2.08		1.75		2.97		
Strength	മ		1.38	1.49	2.01	1.91	2.86	2.47	3.81	4.40	3.92	3.44	2.98	3.05	3.47	1.80	1.57	2.21	2.23	2.19	2.39	2.15	2.00	1.86	1.63	3.07	2.88	
	٧	(Jq)	3,915	3,915	3,631	3,831	3,631	3,831	3,915	3,915	3,915	3,915	3,915	3,915	3,915	6,960	6,960	6,960	6,960	6,960	6,960	3,480	3,480	3,480	3,480	6,220	5,220	
	VN	(ja)	5,421	5,837	7,296	6,925	10,370	8,955	14,832	17,237	15,328	13,486	11,682	11,948	13,582	12,538	10,883	15,389	15,520		· ·	7,473	6,976	6,480	5,009	16,034	15,009	
	V _{M+}	(jq)	5,475	5,908		7,534	11,028	9,543		18,059		13,568	12,531	13,301	14,138	12,778	11,333	15,868	16,461	15,213	16,684	7,941	7,458	6,324	5,899	L	15,133	
	Vw-	(lql)	-5,388	-5,787	-7,479	-6,316	-0,712	-8,367	-14,085	-16,415	-15,822	-13,404	-10,832	-10,596	-13,026	-12,295	-10,452	-14,910	-14,579	-15,291	-16,611	-7,006	-6,495	-6,635	-5,438	-17,083	-14,884	
	Wall	Number	la	đ	2a	5	3a	æ	4a	4	4d	ය	<u>5</u> d	6a	99	7a	qL	8a	8 8	B	98	10a	10 10	11a	11b	12a	12b	

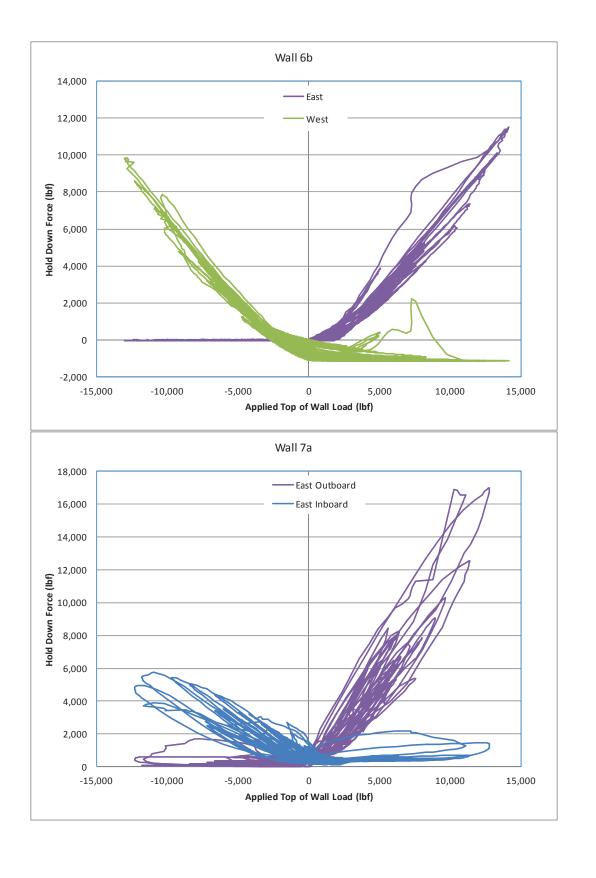

APPENDIX B - MONOTONIC TESTS, GLOBAL WALL DATA

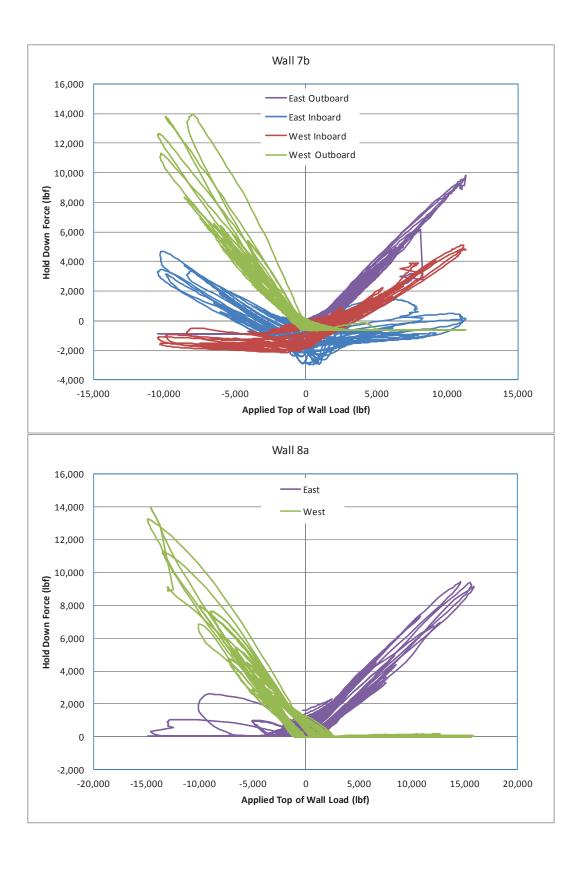

APPENDIX C - HOLD-DOWN FORCES

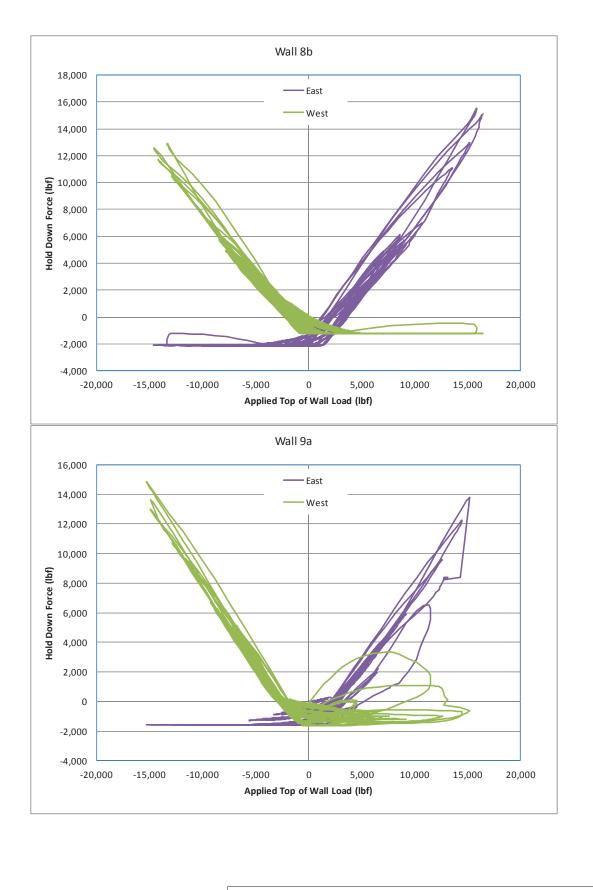


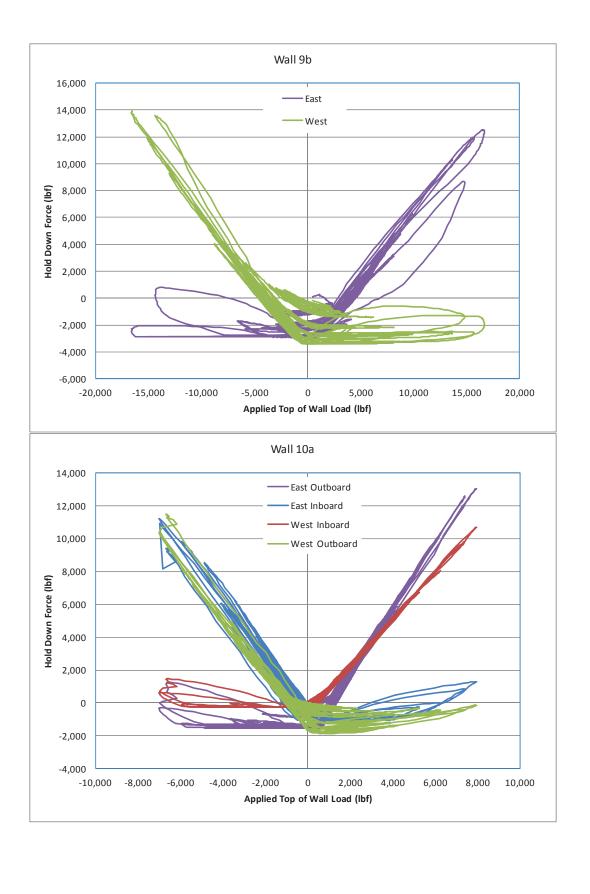


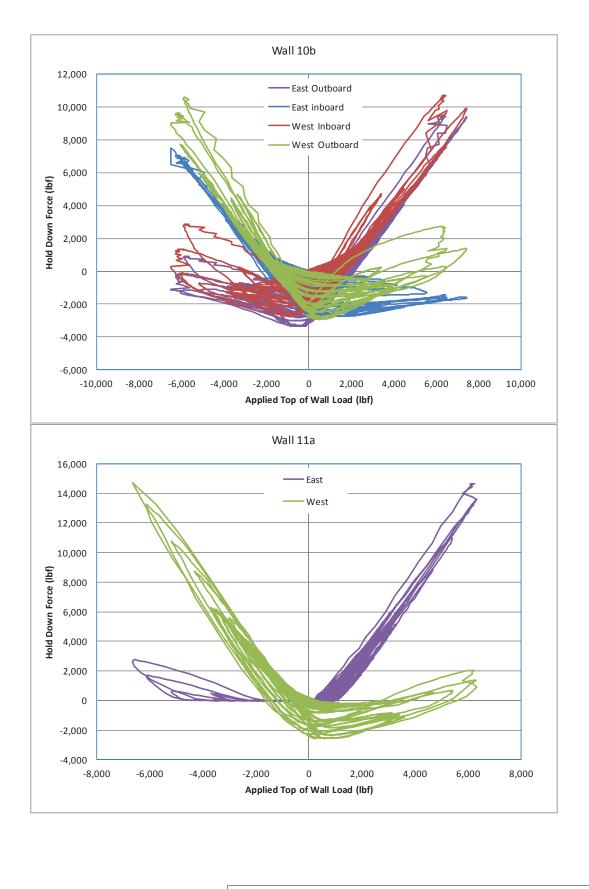


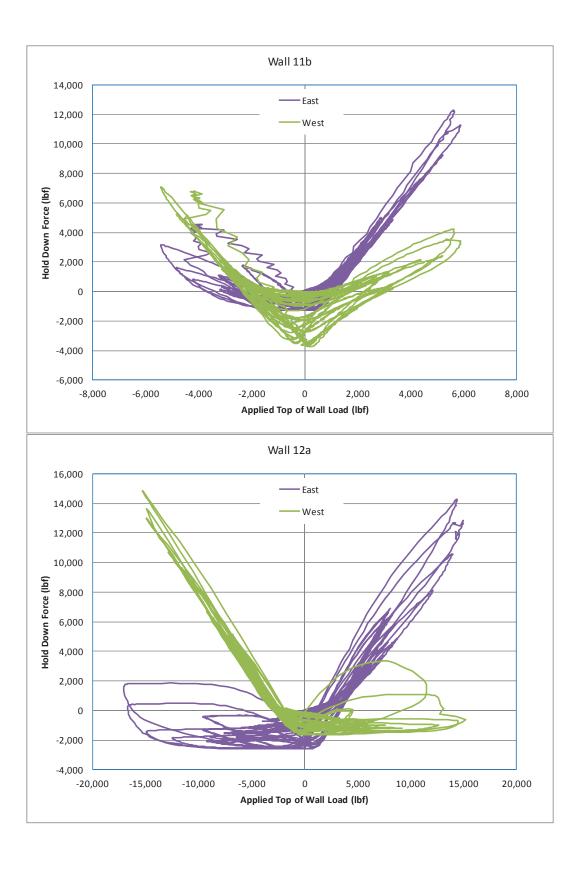

Wall 3a 12,000 -West 10,000 8,000 Hold Down Force (lbf) 6,000 4,000 2,000 0 -5,000 0 5,000 10,000 -15,000 -10,000 15,000 Applied Top of Wall Load (lbf) Wall 3b 10,000 - East West 8,000 6,000 Hold Down Force (lbf) 4,000 2,000 0 -2,000 -4,000 -15,000 -10,000 -5,000 0 5,000 10,000 15,000 Applied Top of Wall Load (lbf)

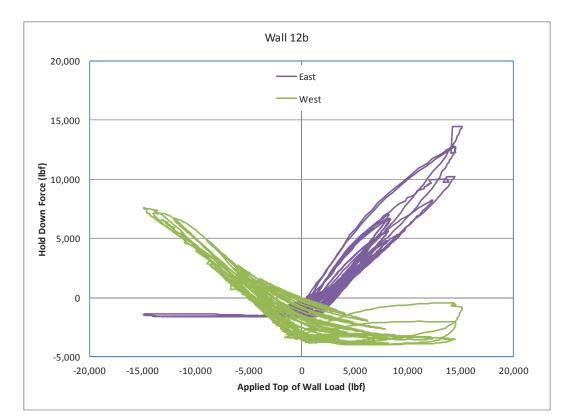


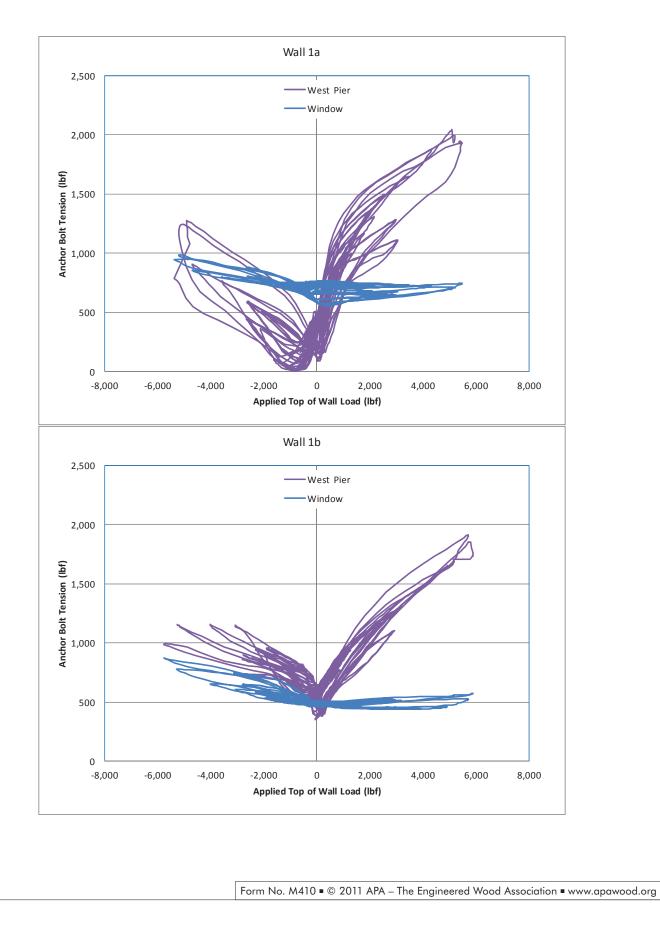


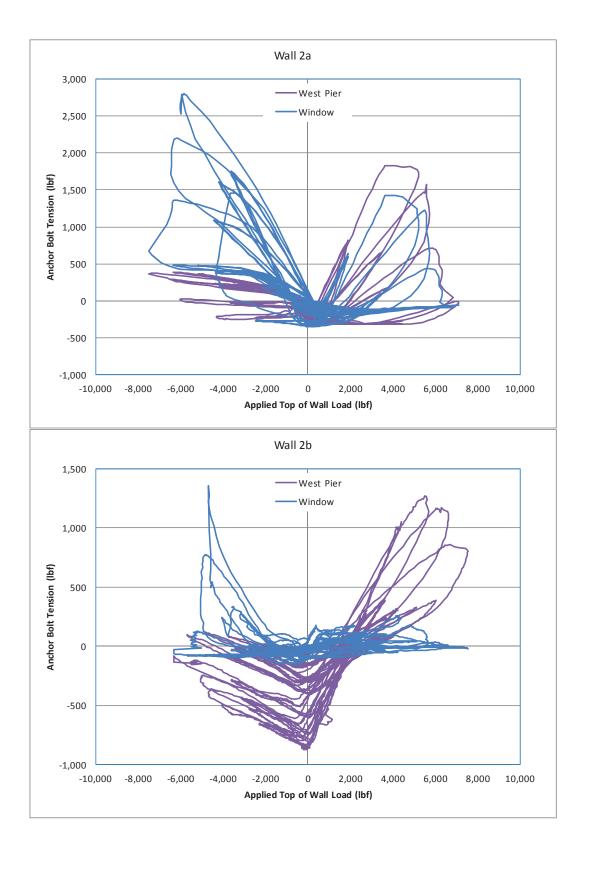


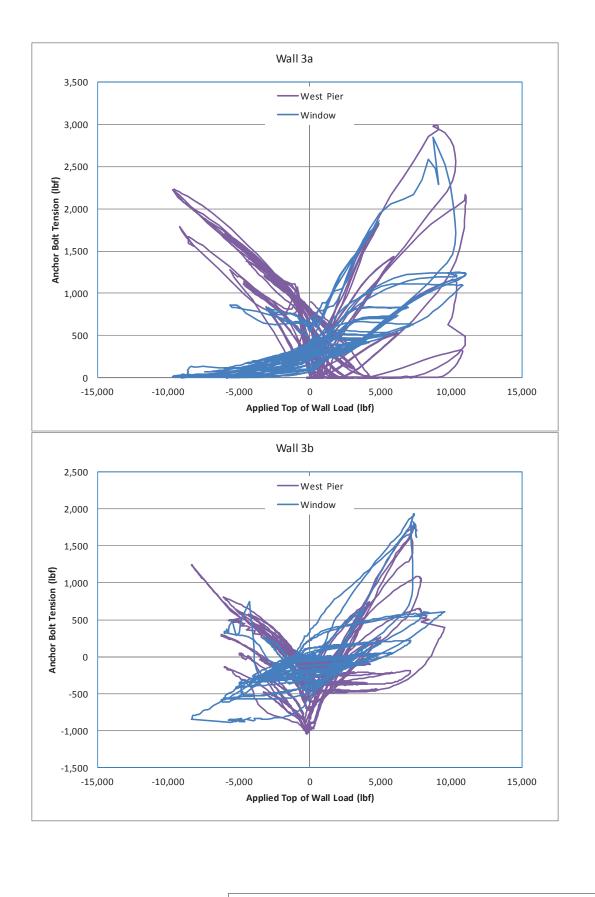


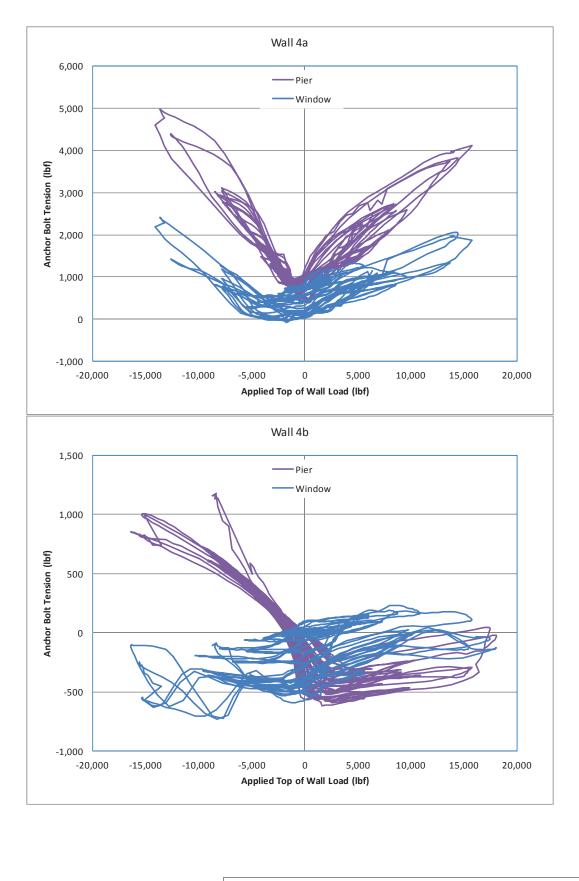


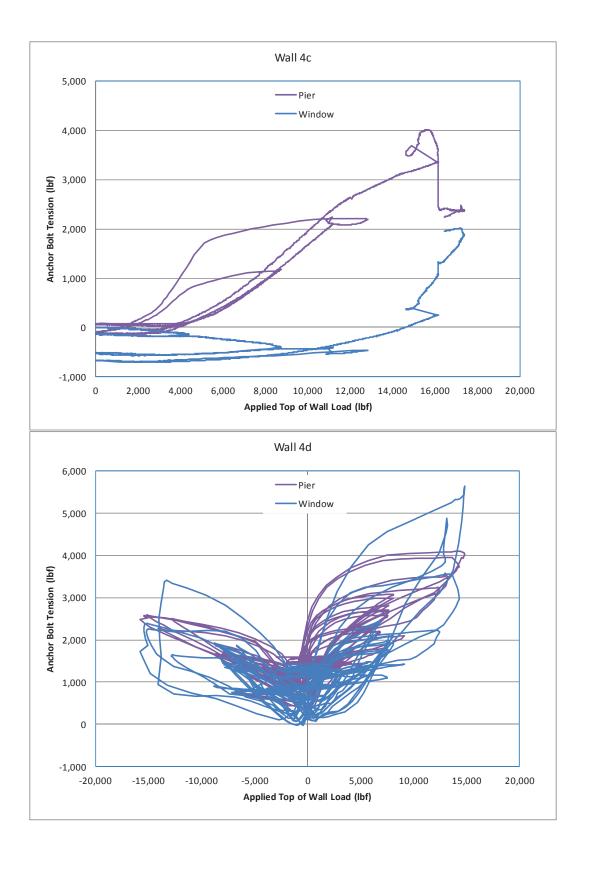


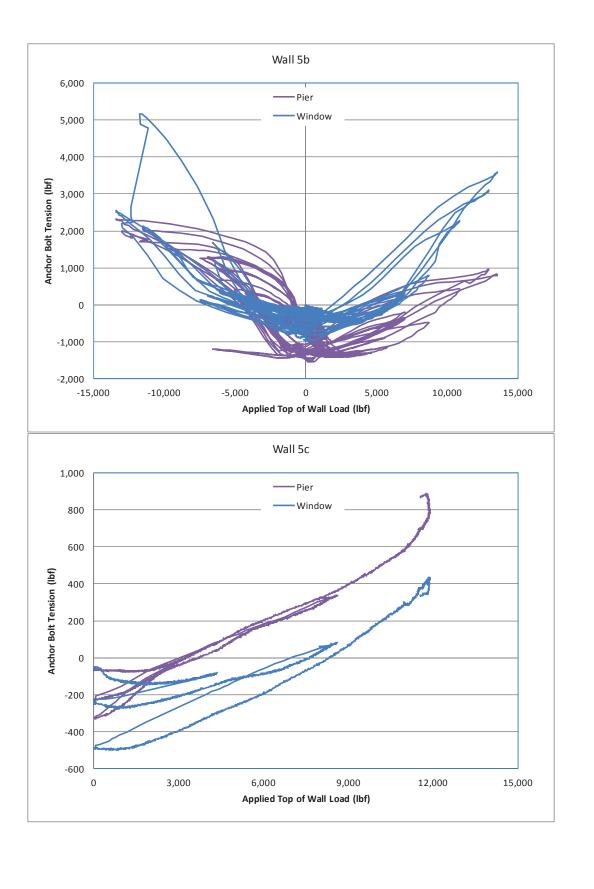


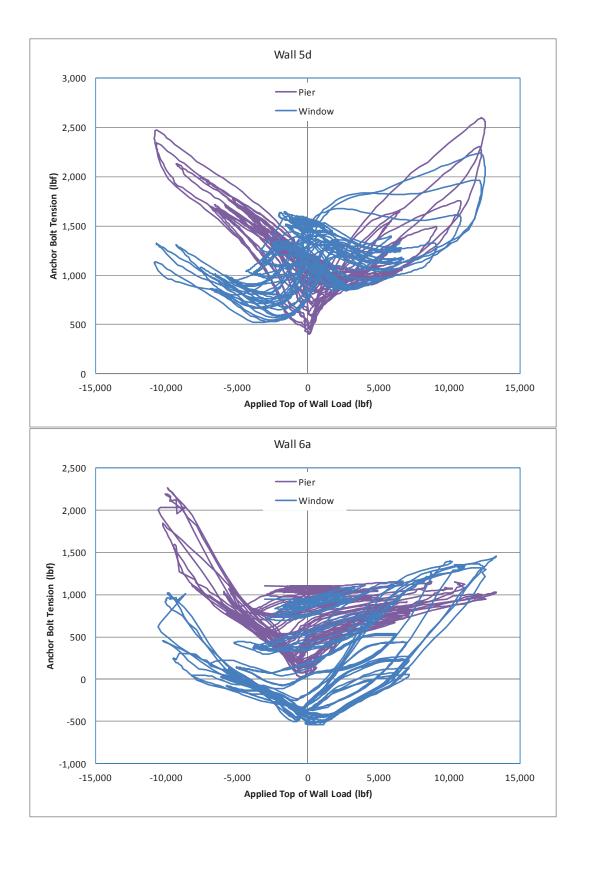


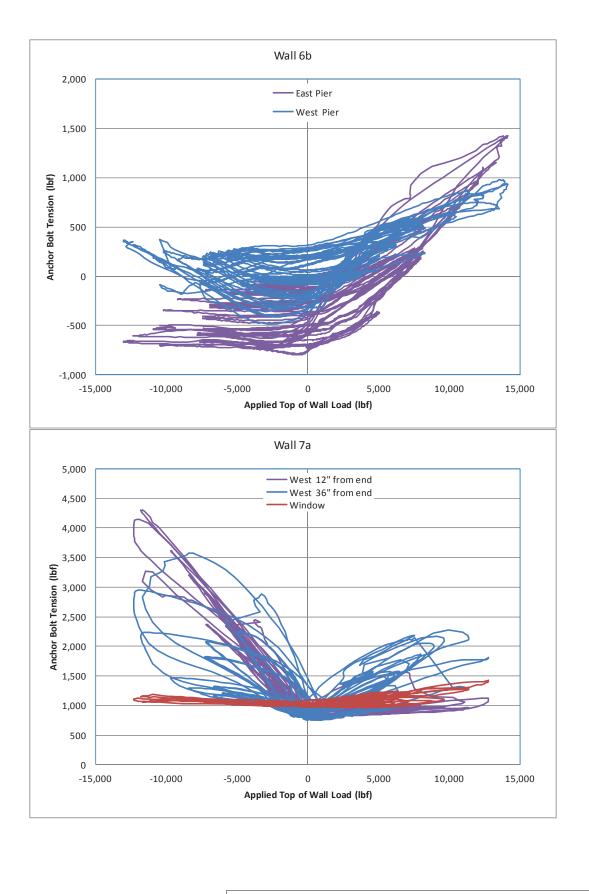


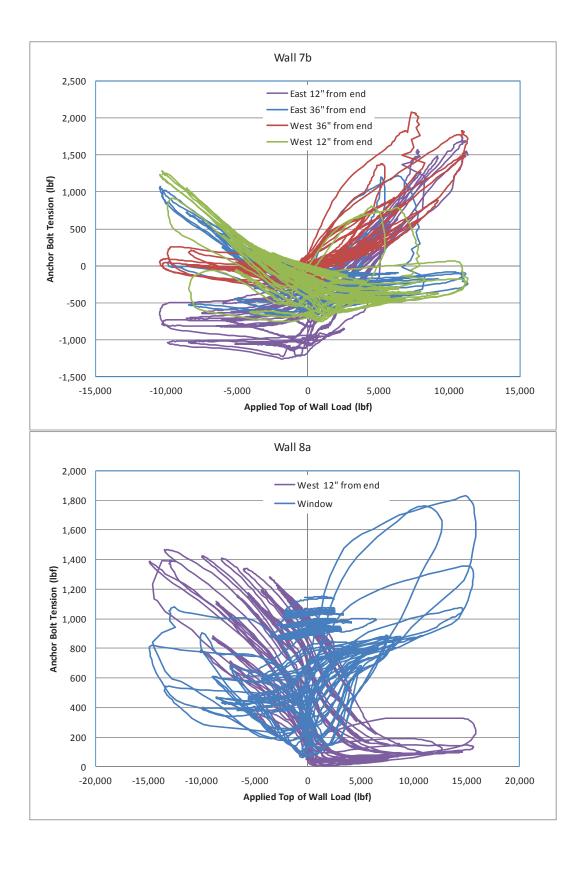

APPENDIX D - ANCHOR BOLT FORCES

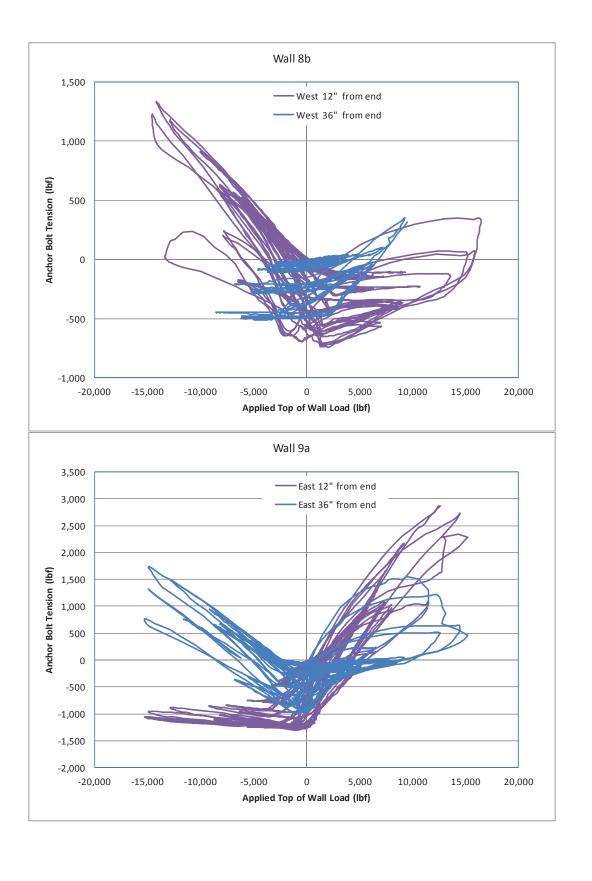


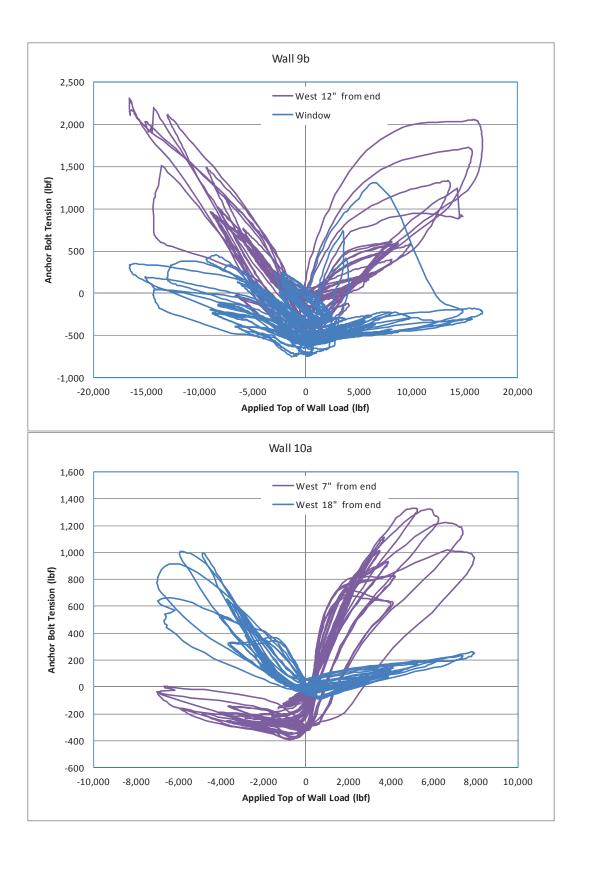

76

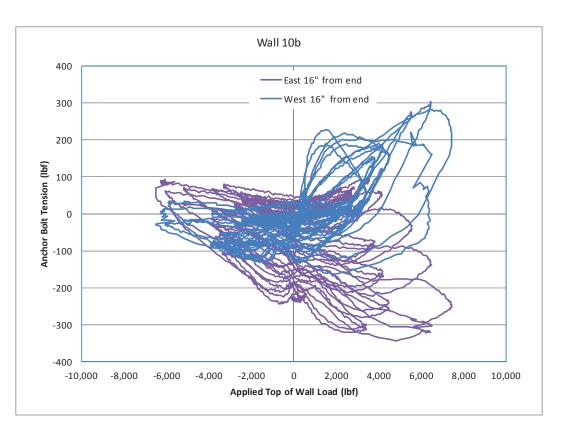


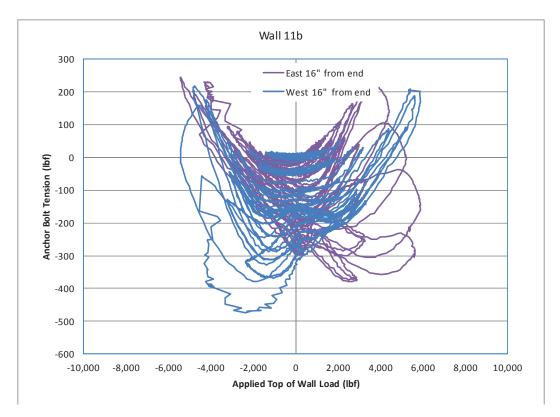


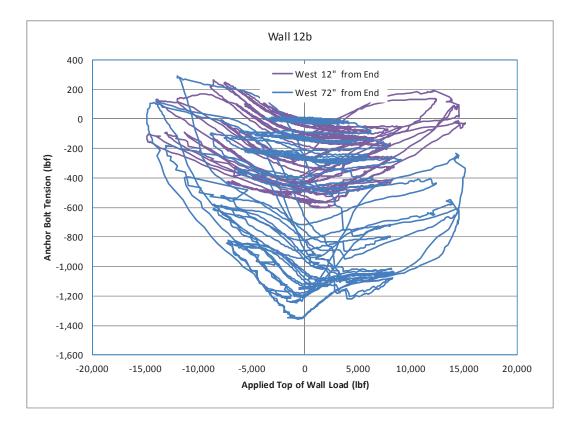




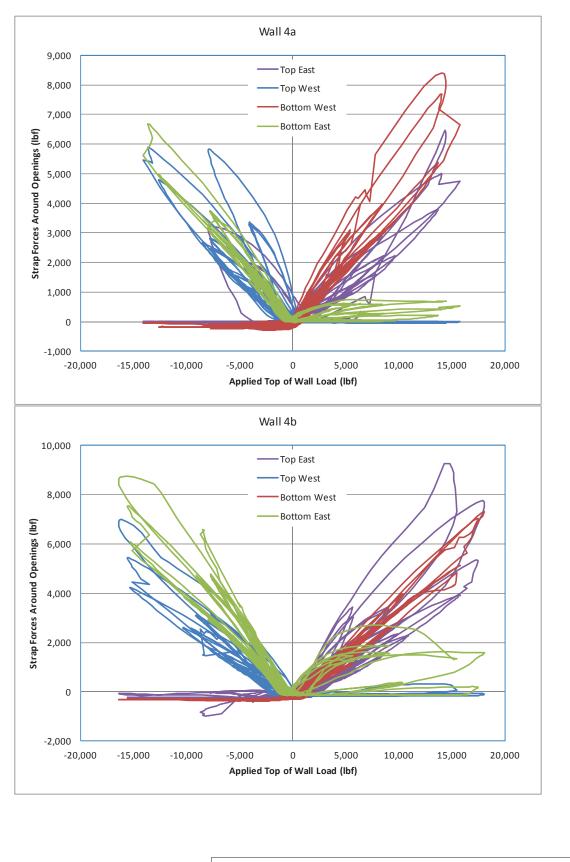


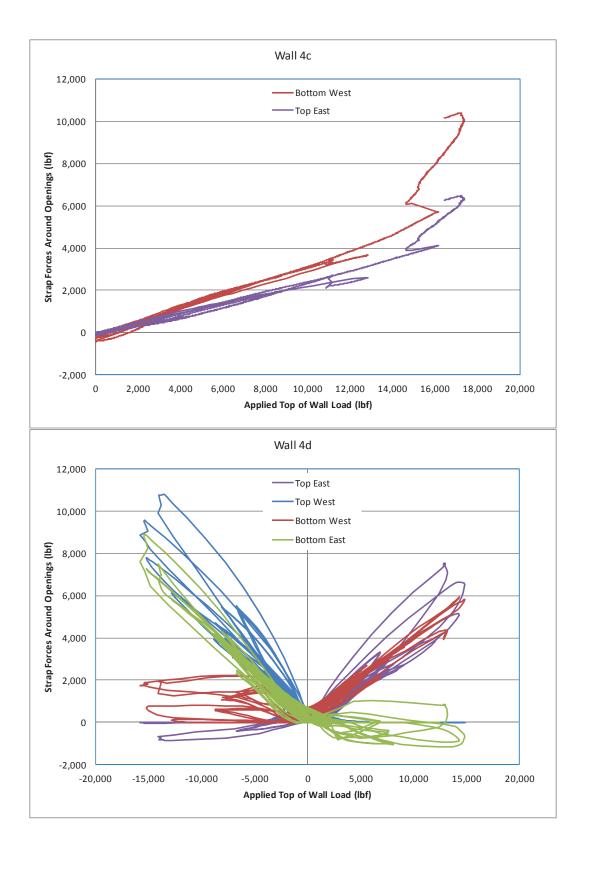


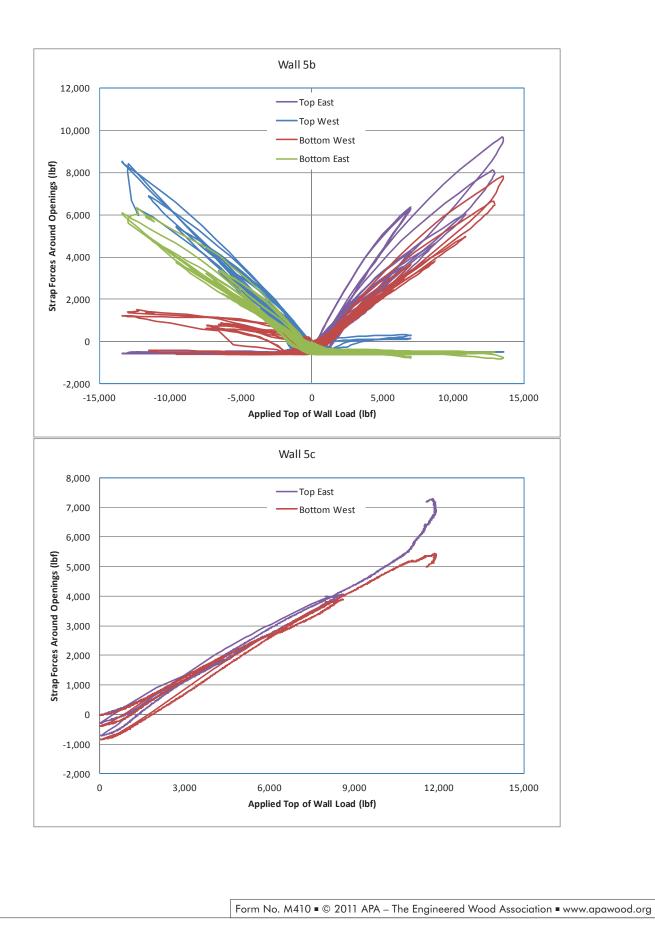


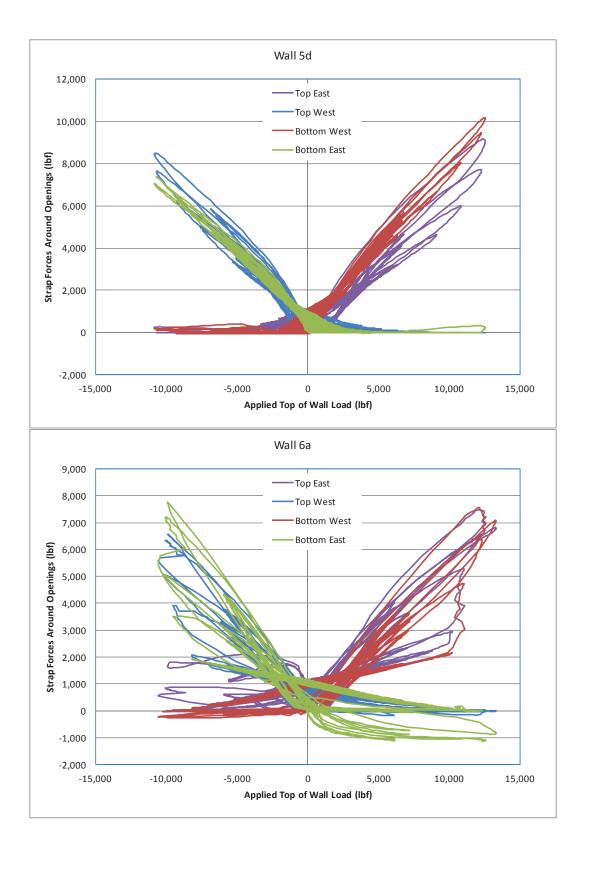


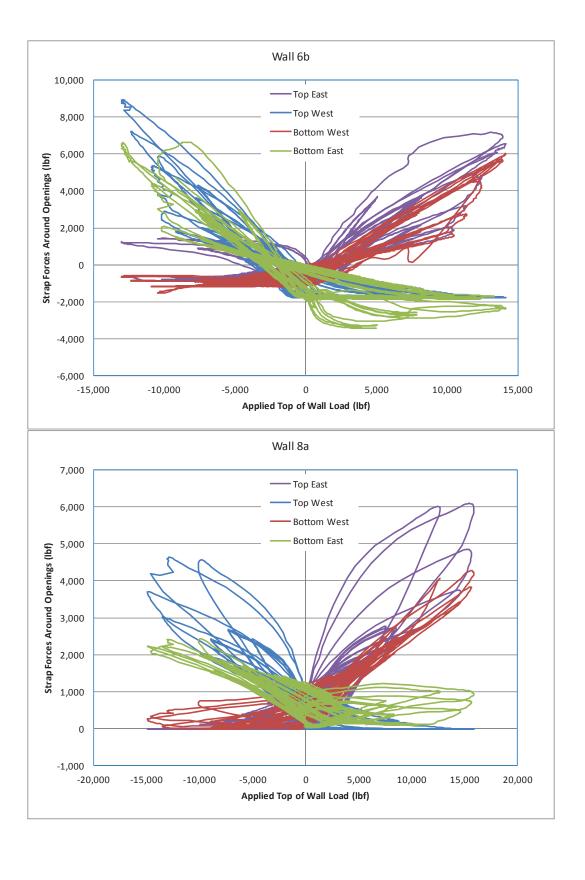
No anchor bolt data collected for Wall 11a

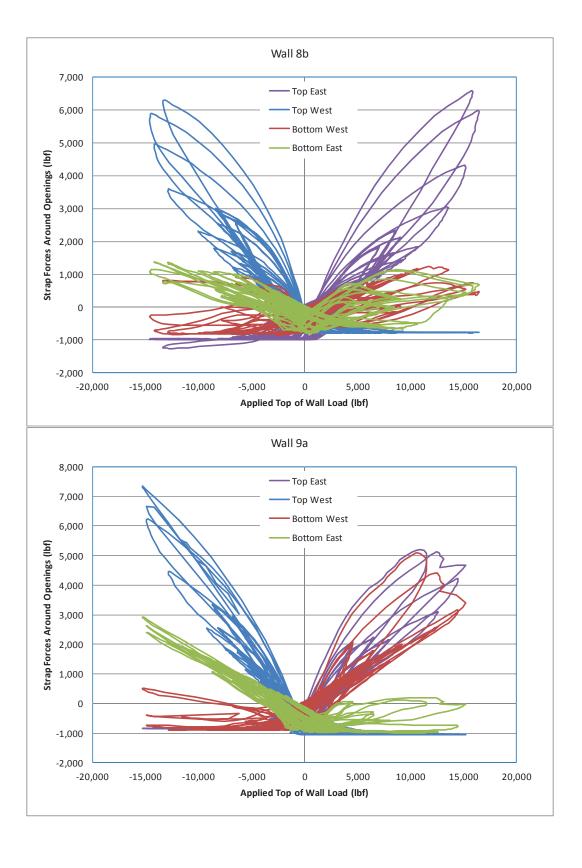

87

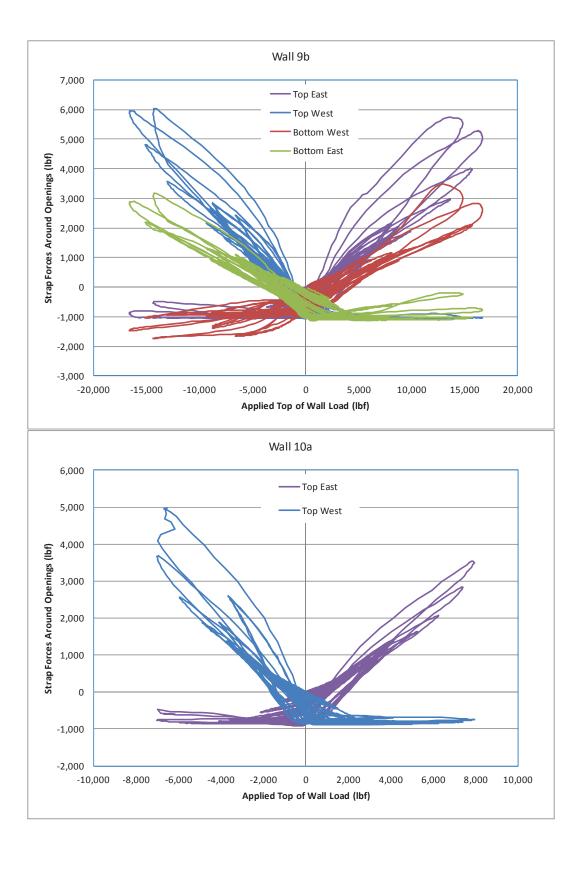



No anchor bolt data collected for Wall 12a




APPENDIX E - STRAP FORCES AROUND OPENINGS





6,000

5,000

4,000

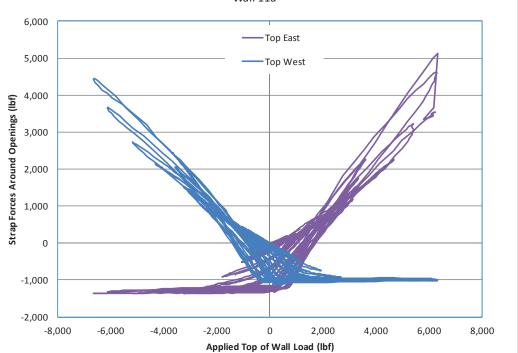
3,000

2,000

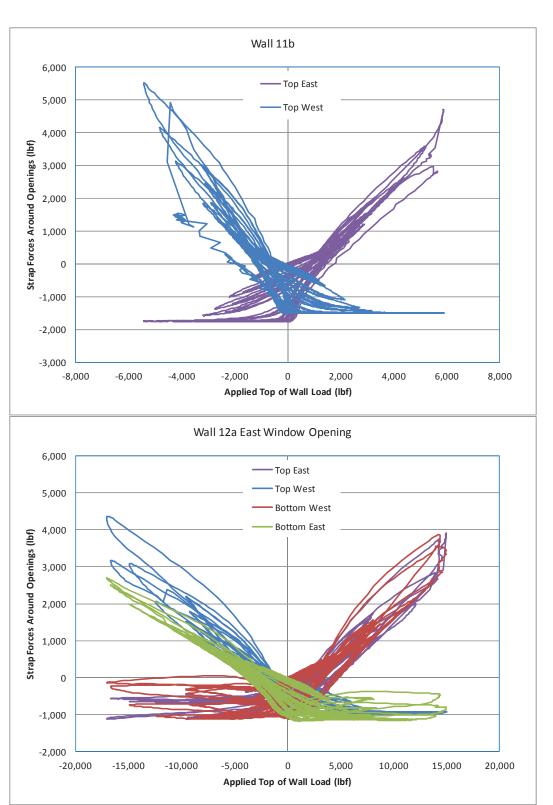
1,000

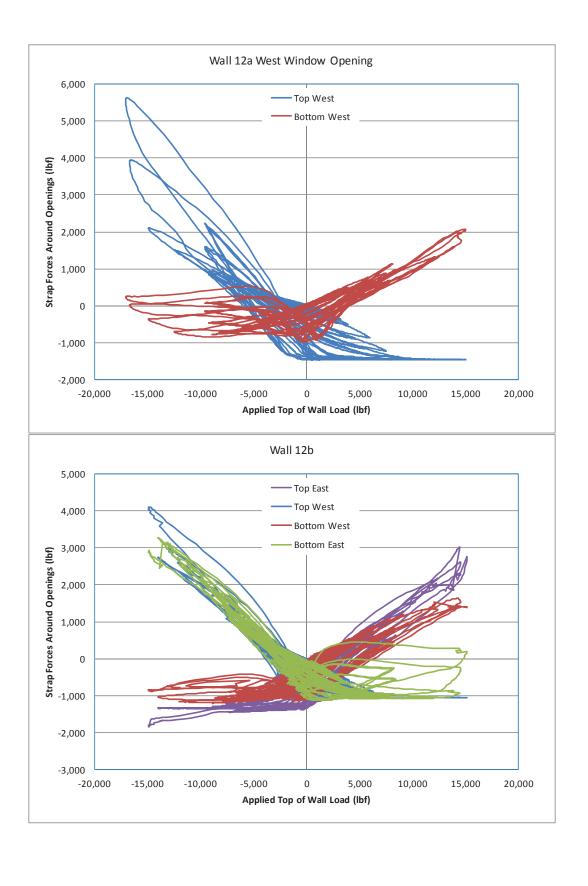
-1,000

-2,000


-3,000

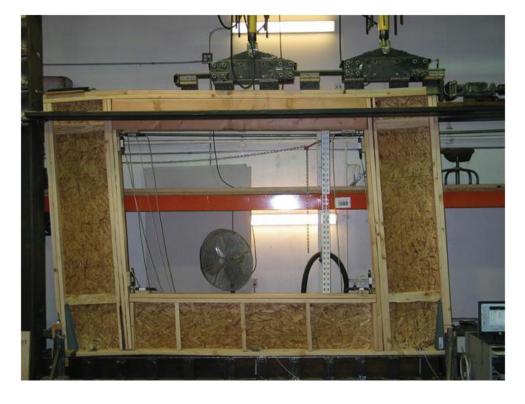
-10,000


0


Strap Forces Around Openings (Ibf)

Wall 10b - Top East Top West -2,000 -8,000 -6,000 -4,000 0 2,000 4,000 6,000 8,000 10,000 Applied Top of Wall Load (lbf) Wall 11a - Top East Top West

97


WALL 5A, WITH "INTERMEDIATE" LOAD HEAD (PAINTED GRAY

DOUBLE TOP PLATE FAILURE FOR WALL 4A, USING "SHORT" LOAD HEAD)

FIGURE F1

APPENDIX F - PHOTOS

WALL 5C, WITH NO LOAD HEAD (Actuator is pushing directly on double top plate)

WALL 7B, WITH "LONG" LOAD HEAD (unpainted steel)

FIGURE F3

FIGURE F4

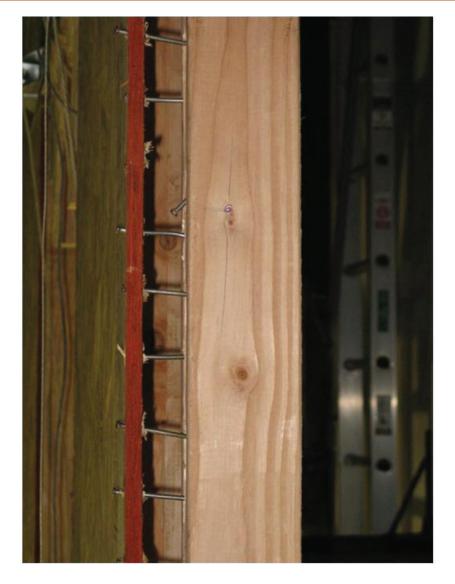
WALL 6A, SHEATHING TEARING, TOP EAST STRAP

FIGURE F6

WALL 6A, SHEATHING TEARING, TOP WEST STRAP

WALL 6A, SHEATHING TEARING, BOTTOM WEST STRAP

FIGURE F8


WALL 6A, SHEATHING TEARING, BOTTOM EAST STRAP

WALL 7B, NAIL HEAD PULL-OUT FROM BOTTOM OF PANEL

WALL 9B, NAIL WITHDRAWAL

105

WALL 6A, SHOWING STRAPS AND DISPLACEMENT GAGES

FIGURE F11

FIGURE F12

WALL 12B, SHEATHING TEARING

WALL 10B, SHOWING INSTRUMENTED HOLD DOWNS AND ANCHOR BOLTS

PART 2: MODELING FORCE TRANSFER AROUND SHEAR WALL OPENINGS

Frank Lam, Ph.D., P.Eng Minghao Li, Ph.D. University of British Columbia, Vancouver, BC

ABSTRACT

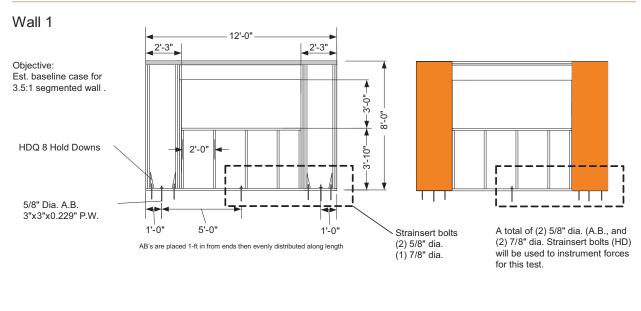
A nonlinear finite element based structural analysis program Wall2D has been developed to model the force transfer around openings of perforated shear walls. The kernel of Wall2D is the model of the nonlinear load-slip response of the frame to sheathing wall connectors. Model predictions were compared with the test results. Since the perforated shear walls encountered failure modes such as tearing and buckling of sheathing panels, failure of framing members and connections, the load path within the wall systems changed once such failure modes were encountered. As a result, Wall2D over predicted the ultimate capacity of the perforated shear walls and can only be used to consider the response up to the design capacity. Comparisons of maximum force transfer around openings (FTAO) at the wall design capacity from the test results, WALL2D model and simplified analogs are presented. The prediction error range of the computer model at the wall design capacity is from –15.4% to +4.3%.

The Drag Strut method can either under predict or over predict the maximum FTAO. The Cantilevered Beam, Coupled Beam, and Diekmann's methods on the other hand are very conservative. When compared to the test data, using Diekmann's method as a base, a reduction correction factor of 1.2 to 1.3 might be considered to account for the contribution of the framing and nail elements within the wall system. Diekmann's method however is not suitable to predict the FTAO in cases when the wall segment below the opening is not available as in the case of a garage door opening. Future studies are needed to fine tune the computer model to consider the currently ignored nonlinearity and failure modes.

1.2 INTRODUCTION

The current design codes provide three solutions to wood shear walls with openings. The first one considers only fullheight wall segments and ignores the contribution of wall segments above and below openings. The second one takes into account the wall segments with openings using an empirical reduction factor. The last solution is the "force transfer around openings" (FTAO) method in which shear walls are designed for the forces transferred around openings. And nails, metal straps, blocking members may be required to reinforce the corners of openings. In the last solution, rational structural analyses are needed to obtain the amount of forces transferred around openings.

Martin (2005) provided a detailed review of the common design methods of wood shear wall with openings: traditional segmented shear wall approach, drag strut method, and cantilevered beam analog. Depending on the geometry of a perforated shear wall, the drag strut and cantilevered beam methods can yield very different estimates of the forces around the openings. Diekmann (2005) provided a discussion on Martin's article and presented a method he proposed (1997) based on Vierendeel truss analog. Kolba (2000) performed a detailed experimental study on perforated wood shear walls focusing on the applicability of Diekmann's method. Although the results were inconclusive, detailed explanations of the assumptions of Diekmann's method were provided. Robertson (2004) discussed different methodologies available to an engineer for analyzing and designing force transfer around openings in plywood sheathed shear walls. He discussed building codes requirements and analyzed examples of several perforated shear wall configurations using the drag strut method, cantilevered beam method, and coupled beam analogy (a variation of Diekmann's method but seems to lack some equilibrium rigor). Large differences in estimated force transfer around opening were found. Lam (2010) also reviewed four commonly used "rational" design methods (Drag Strut, Cantilevered Beam, Coupled Beam, and Diekmann's method) and compared the estimations of maximum transfer forces of five cases of shear wall with openings. The results indicated that depending which "rational" analysis method is used the results can vary significantly. This reinforces the need to study the FTAO problem carefully to enhance our understanding.

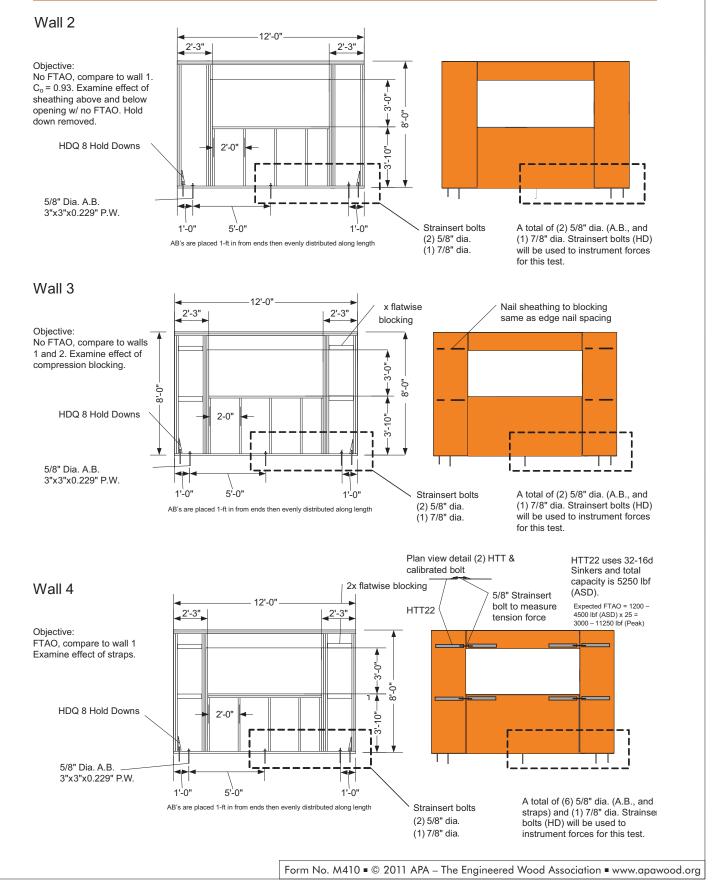

In this study, a finite element model "WALL2D" has been used to estimate the FTAO in twelve different types of shear walls with different sizes of opening, widths of full-height wall piers and construction techniques, as shown in Figure 1. Monotonic loading was applied on the top of each wall and internal forces in the FTAO metal straps, hold-downs, and anchor bolts were obtained. The modeling predictions were compared with the shear wall test results provided by the APA laboratory for the model verification.

2.2 WALL 2D - SHEAR WALL MODEL

The WALL2D model was developed at the University of British Columbia (UBC) to study the behavior of panelsheathed wood shear walls under monotonic loads and cyclic loads. It was compiled in Intel Visual Fortran Compiler V10.1 (Intel, 2005). This original version of the WALL2D model consists of linear elastic beam elements for the framing members, orthotropic plate elements for the sheathing panels, linear springs for framing connections, and oriented nonlinear springs for panel-frame nailed connections. A special feature of this wall model is the implementation of a mechanics-based nail connection model, called HYST, to account for the nonlinear springs connecting the framing members to the sheathing panels. The current version of the HYST model can fully address strength and stiffness degradation as well as the pinching effect in a typical hysteresis of a panel-frame nail connection. In this project, to study the FTAO in the shear walls, two types of spring elements have been added. One is the tension-only springs for hold-downs, anchor bolts, and metal straps around the wall openings; the other one is the compression-only springs to account for contacts between wood members and contacts between sill plates and the foundation.

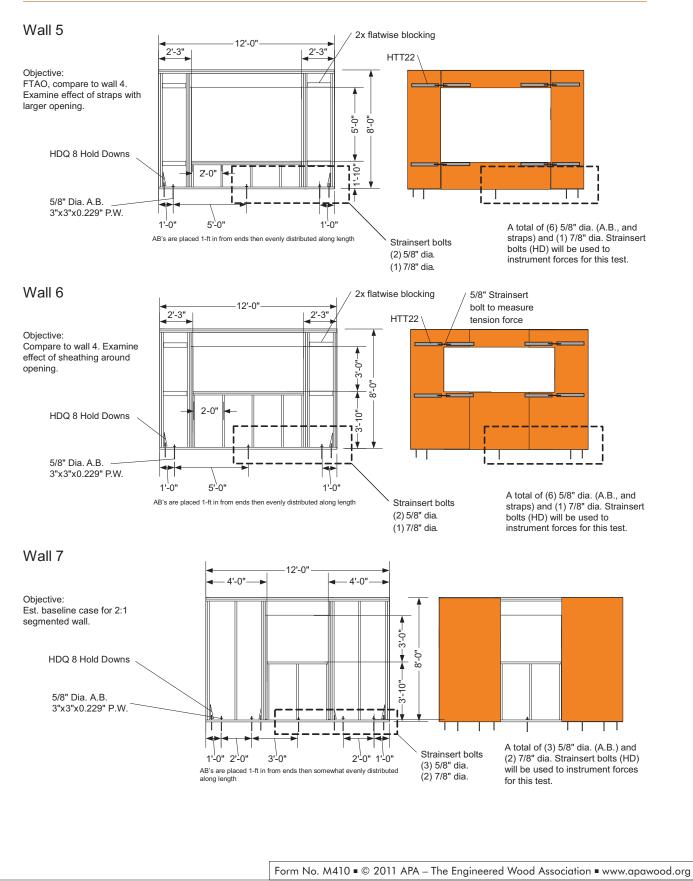
The detailed introduction of the WALL2D model as well as the HYST model can be found in a research paper submitted to *Journal of Structural Engineering* for publication (Li et al. 2011).

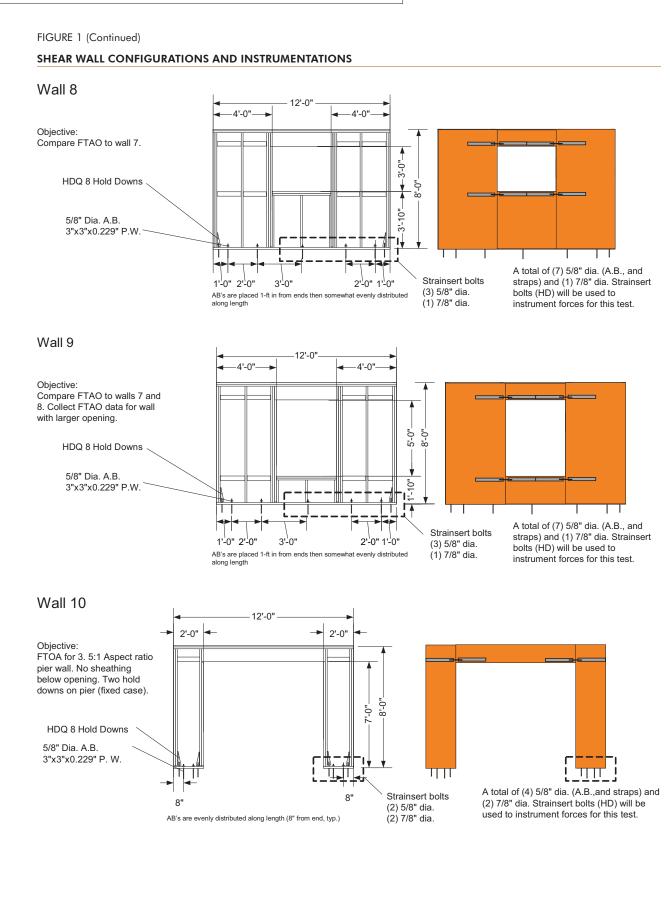
FIGURE 1

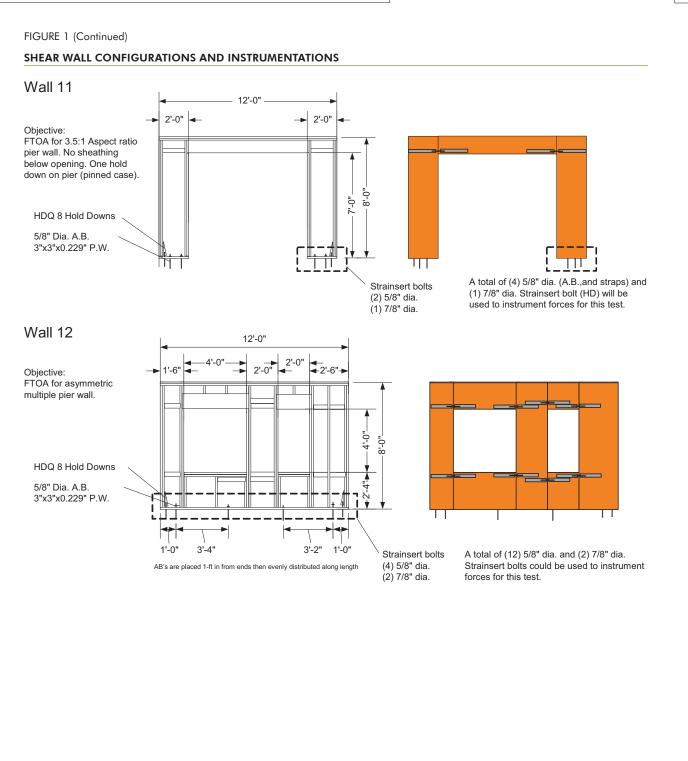


SHEAR WALL CONFIGURATIONS AND INSTRUMENTATIONS

109


FIGURE 1 (Continued)


SHEAR WALL CONFIGURATIONS AND INSTRUMENTATIONS


FIGURE 1 (Continued)

SHEAR WALL CONFIGURATIONS AND INSTRUMENTATIONS

Form No. M410 = © 2011 APA – The Engineered Wood Association = www.apawood.org

2.3 MODEL INPUT

To calibrate the HYST nail model parameters (Foschi et al., 2010; Li et al., 2011) implemented in WALL2D model, nail connection tests have been conducted at Timber Engineering and Applied Mechanics Laboratory at UBC. In each nail connection, a 10d common nail fastener was used to connect a piece of 2x4 Douglas-fir lumber and a piece of 1/2-in.-thick OSB sheathing panel. A total of 15 specimens were tested under monotonic loading and cyclic loading. The CUREE near-fault protocol and the CUREE basic/standard protocol were used for the cyclic tests. Figure 2 shows the test setup of the nail connections.

SCHEMATICS OF NAIL TEST CONFIGURATION

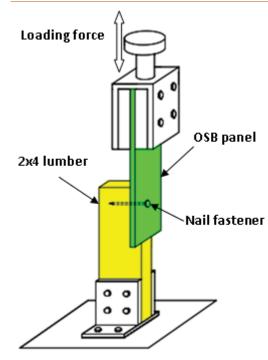
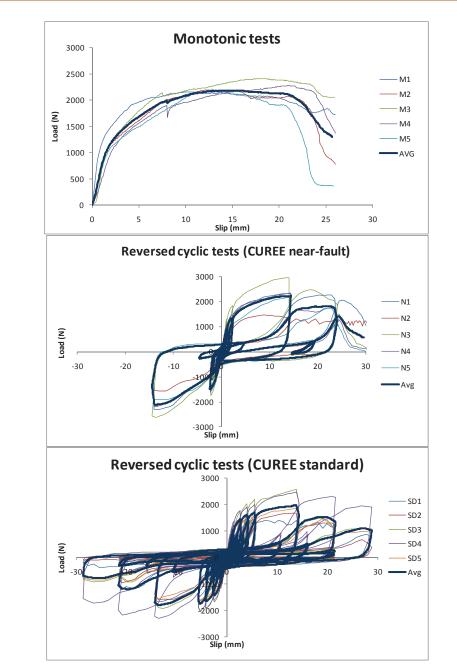
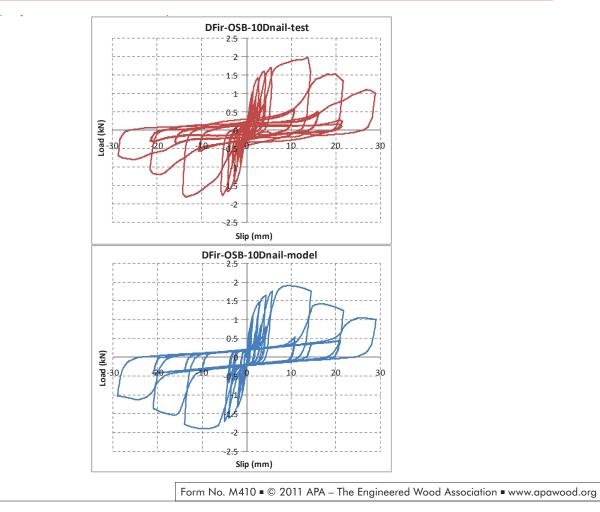



Figure 3 shows the test results in terms of load-slip curves under monotonic loading and cyclic loading. The major failure modes observed in these nail connections were the nail pull-through failures, as shown in Figure 4.

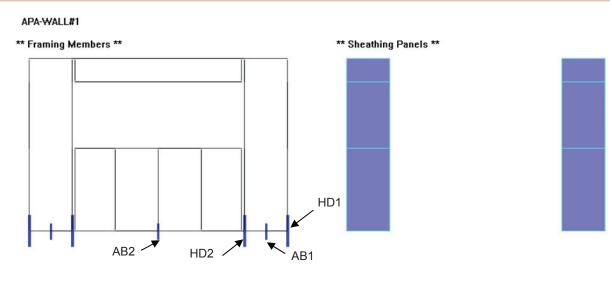
FIGURE 3


MAJOR FAILURE MODES OF THE NAIL CONNECTIONS

The average backbone curve of the load-slip curves was used to calibrate the HYST nail model parameters (Foschi et al., 2010; Li et al., 2011). Figure 5 shows the comparison between the calibrated HYST model predictions and the test results. The calibrated HYST models were then implemented in the WALL2D model to represent the load-slip hysteresis of the nailed panel-frame connections.

FIGURE 5

In this study, the modulus of elasticity for Douglas-fir lumber was assumed to be 1.45 x 10⁶ psi (10 GPa) (CSA, 2005). For the OSB sheathing panels, Young's moduli E_x and E_y were assumed as 0.51 x 10⁶ psi (3.5 GPa) and 0.29 x 10⁶ psi (2.0 GPa) along the major axis and the perpendicular axis, respectively; the shear-through-thickness rigidity G_{xy} was taken as 73 x 10³ psi (0.5 GPa). Poisson ratios γ_{xy} and γ_{yx} were 0.13 and 0.23 (Thomas, 2003).

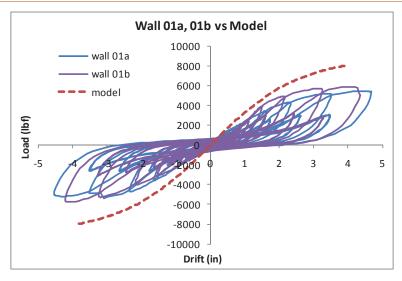

HDQ8 hold-downs with allowable tension loads of 7,630 lbf (33.9 kN) were used in these walls to resist shear wall uplifting. HTT22 tension ties with allowable tension loads of 4,165 lbf (18.5 kN) were used for to transfer the forces around shear wall openings. At the allowable loads, the deflections of HDQ8 and HTT22 are estimated at 0.094 in. (2.4 mm) and 0.152 in. (3.9 mm), respectively. In the wall model, the stiffness of the tension-only springs for the HDQ8 hold-downs and HTT22 ties were assumed to be 81,170 lbf/in. (14.2 kN/mm) and 27,401 lbf/in. (4.8 kN/mm), respectively. The technical information of HDQ8 and HTT22 was obtained from the website of the manufacturer (Simpson Strong-Tie Co., Inc., 2010).

2.4 MODELING RESULTS

Figure 6 to Figure 41 show the comparisons between the modeling results and the test results in terms of the loaddrift curves and the relationship between applied wall loads and the internal forces of hold-downs, anchor bolts and the metal straps for FTAO. In the computer modeling, these walls were loaded up to approximately 4 in. (100 mm) monotonically in wall drift in a displacement control mode.

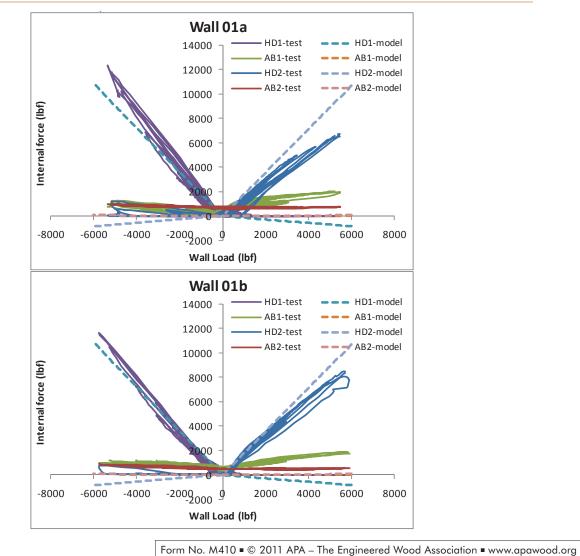
FIGURE 6

WALL #1 - WALL2D MODEL


Form No. M410 = © 2011 APA – The Engineered Wood Association = www.apawood.org

117

Evaluation of Force Transfer Around Openings – Experimental and Analytical Findings


FIGURE 7

WALL #1 - MODEL PREDICTED LOAD-DRIFT CURVES vs TEST RESULTS

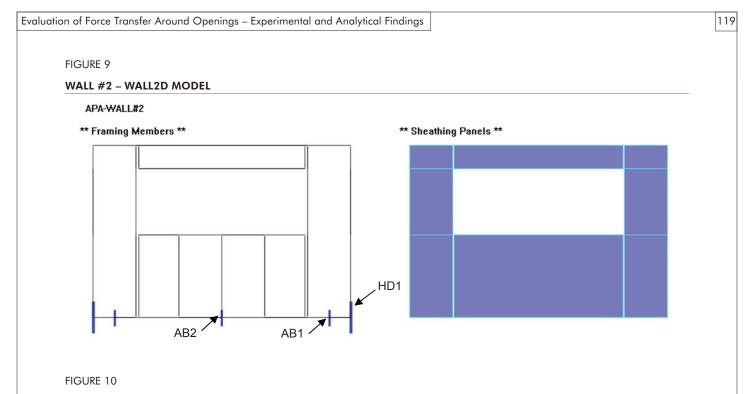
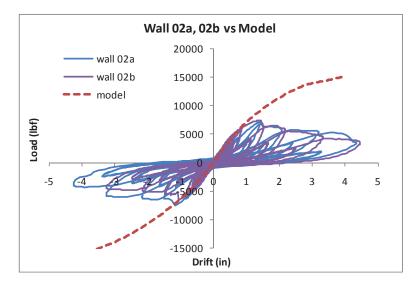
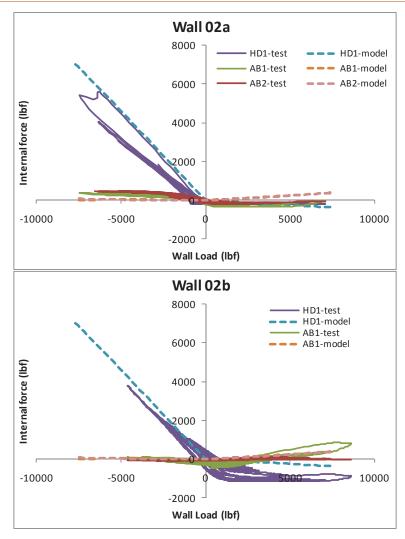


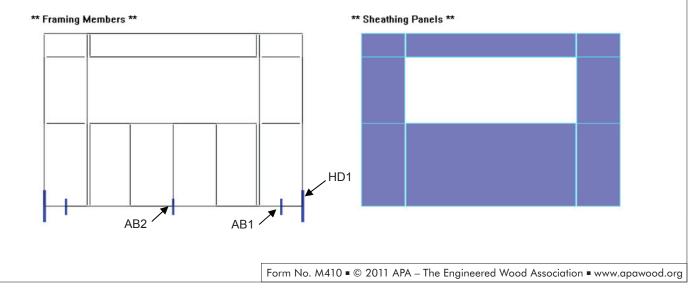
FIGURE 8


WALL #1 - MODEL PREDICTED INTERNAL FORCES vs TEST RESULTS

118



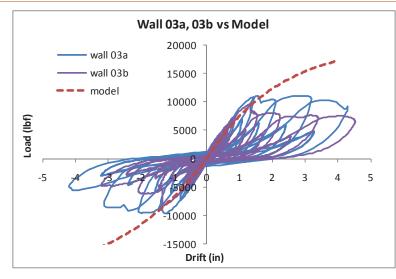
WALL 2 - MODEL PREDICTED LOAD-DRIFT CURVES vs TEST RESULTS


Form No. M410
© 2011 APA – The Engineered Wood Association
www.apawood.org

WALL #2 – MODEL PREDICTED INTERNAL FORCES vs TEST RESULTS

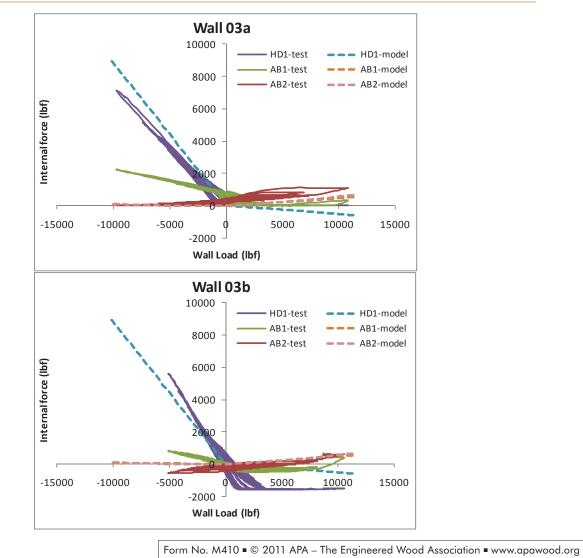
FIGURE 12

WALL #3 - WALL2D MODEL



Evaluation of Force Transfer Around Openings – Experimental and Analytical Findings

121


FIGURE 13

WALL #3 - MODEL PREDICTED LOAD-DRIFT CURVES vs TEST RESULTS

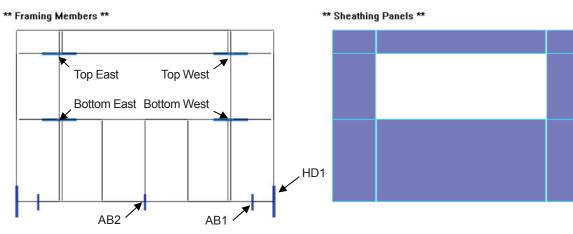
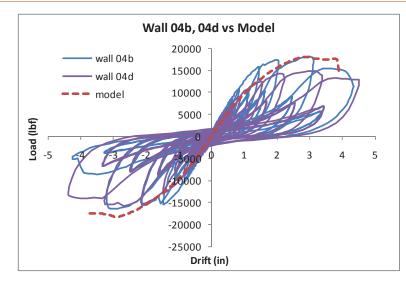
FIGURE 14

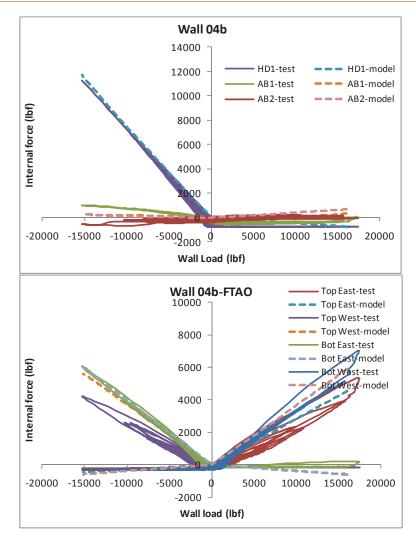
WALL #3 - MODEL PREDICTED INTERNAL FORCES vs TEST RESULTS

FIGURE 15

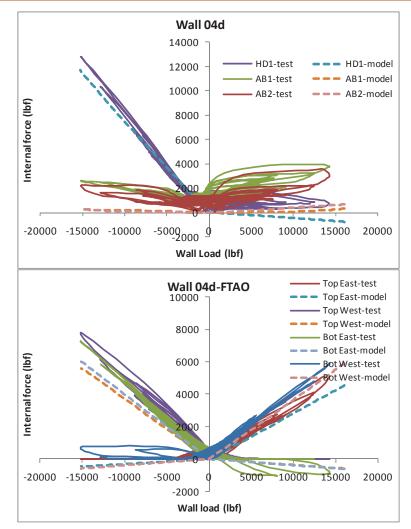
WALL #4 - WALL2D MODEL

APA-WALL#4


FIGURE 16

WALL #4 - MODEL PREDICTED LOAD-DRIFT CURVES vs TEST RESULTS


Form No. M410 = © 2011 APA – The Engineered Wood Association = www.apawood.org

WALL #4 – MODEL PREDICTED INTERNAL FORCES vs TEST RESULTS

FIGURE 17 (Continued)

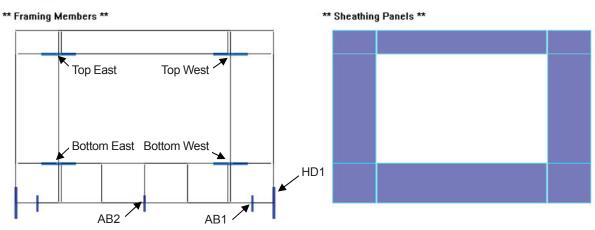
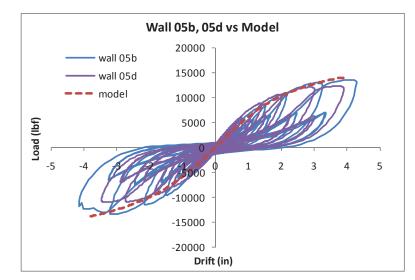
WALL #4 – MODEL PREDICTED INTERNAL FORCES vs TEST RESULTS

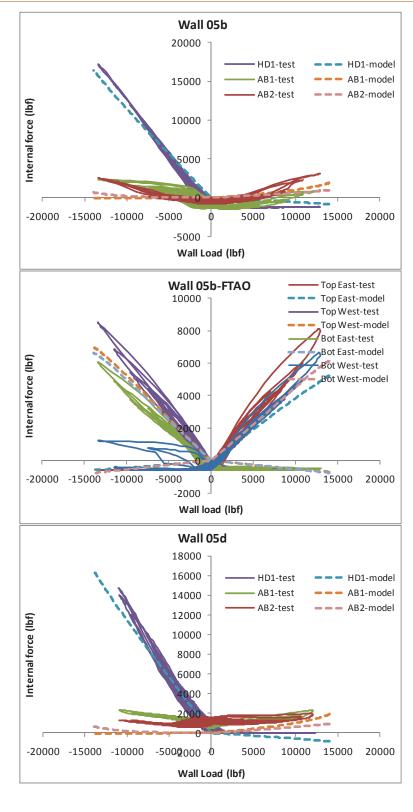
124

FIGURE 18

WALL #5 - WALL2D MODEL

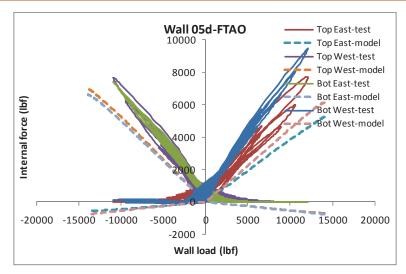
APA-WALL#5

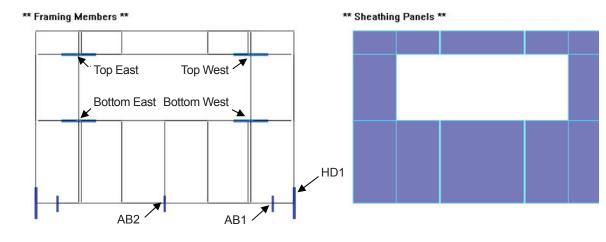

FIGURE 19

WALL #5 - MODEL PREDICTED LOAD-DRIFT CURVES vs TEST RESULTS

Form No. M410
© 2011 APA – The Engineered Wood Association
www.apawood.org


WALL #5 - MODEL PREDICTED INTERNAL FORCES vs TEST RESULTS

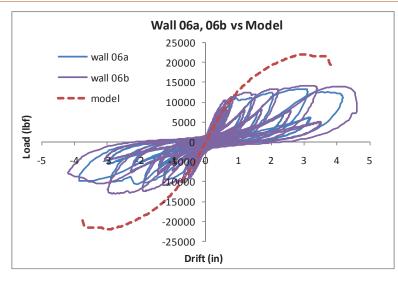
Form No. M410
© 2011 APA – The Engineered Wood Association
www.apawood.org


FIGURE 20 (Continued)

WALL #5 - MODEL PREDICTED INTERNAL FORCES vs TEST RESULTS

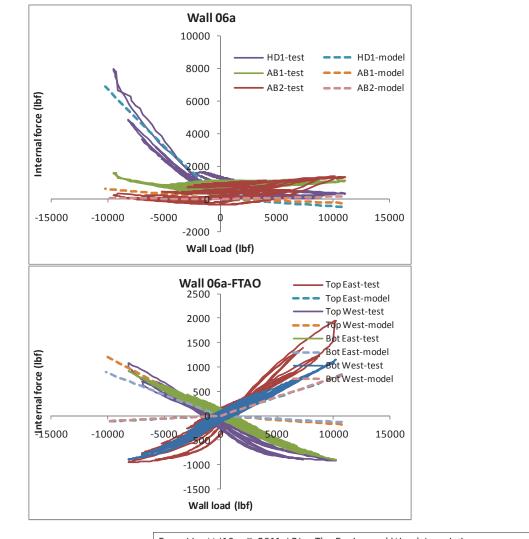
FIGURE 21

WALL #6 - WALL2D MODEL



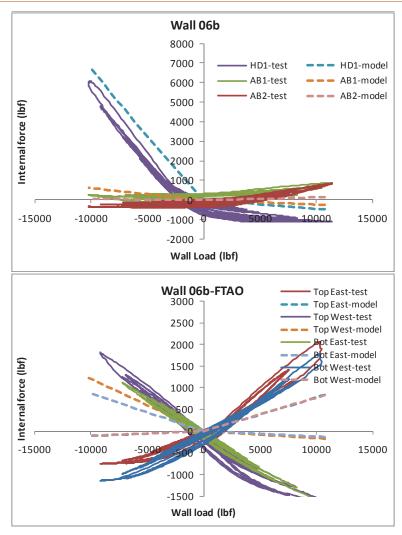
Evaluation of Force Transfer Around Openings – Experimental and Analytical Findings

128


FIGURE 22

WALL #6 - MODEL PREDICTED LOAD-DRIFT CURVES vs TEST RESULTS

FIGURE 23


WALL #6 - MODEL PREDICTED INTERNAL FORCES vs TEST RESULTS

Form No. M410
© 2011 APA – The Engineered Wood Association
www.apawood.org

FIGURE 23 (Continued)

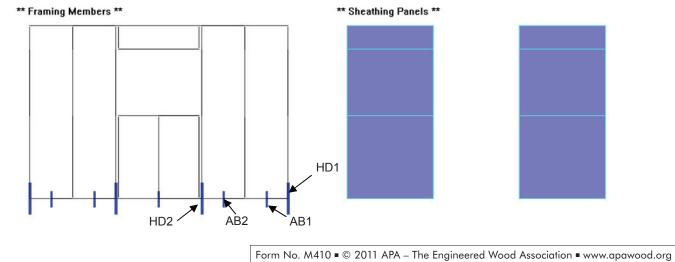

WALL #6 – MODEL PREDICTED INTERNAL FORCES vs TEST RESULTS

FIGURE 24

WALL #7 - WALL2D MODEL

FIGURE 25

WALL #7 - MODEL PREDICTED LOAD-DRIFT CURVES vs TEST RESULTS

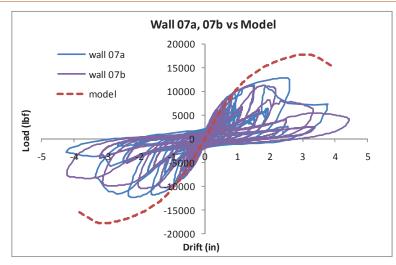
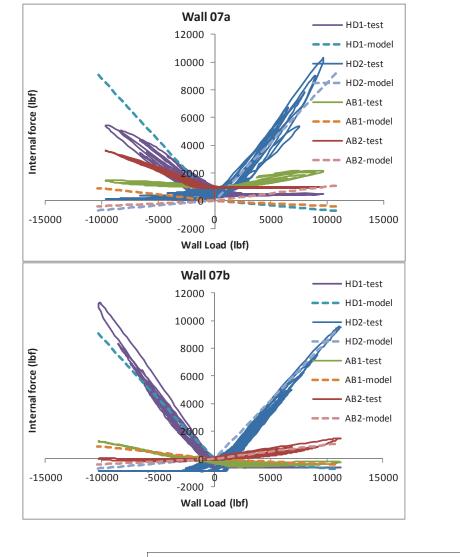
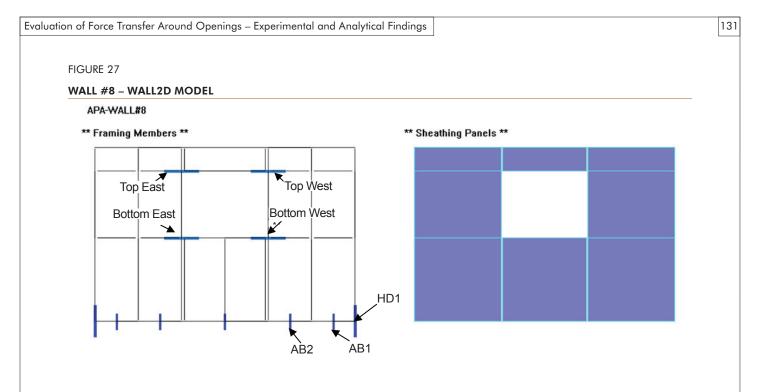
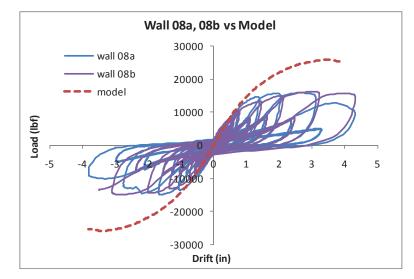
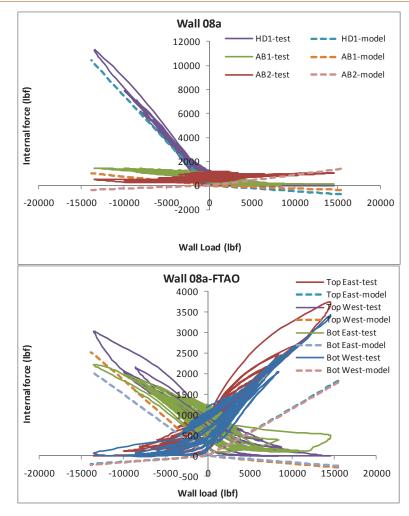




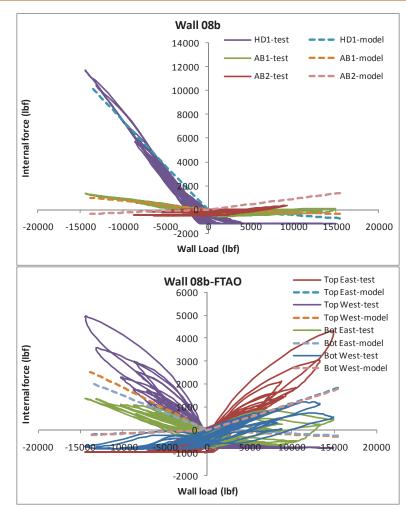
FIGURE 26


WALL #7 - MODEL PREDICTED INTERNAL FORCES vs TEST RESULTS

Form No. M410
© 2011 APA – The Engineered Wood Association
www.apawood.org

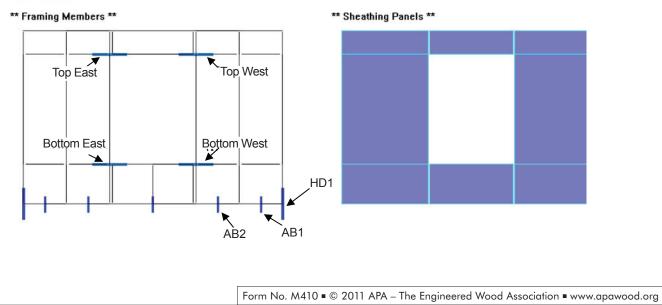


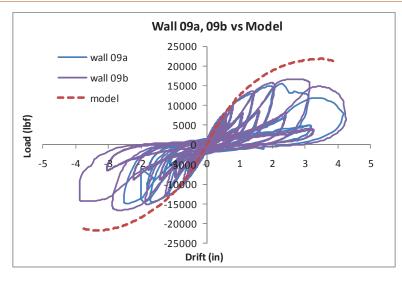
WALL #8 - MODEL PREDICTED LOAD-DRIFT CURVES vs TEST RESULTS


Form No. M410 • © 2011 APA – The Engineered Wood Association • www.apawood.org

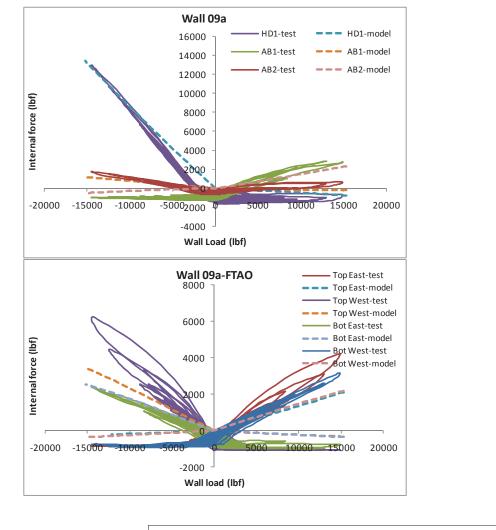
WALL #8 – MODEL PREDICTED INTERNAL FORCES vs TEST RESULTS

FIGURE 29 (Continued)



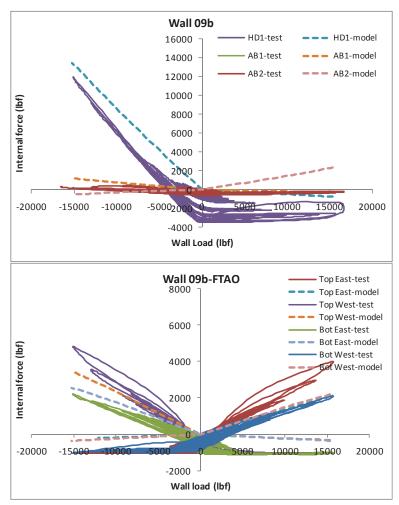

FIGURE 30

WALL #9 - MODEL PREDICTED LOAD-DRIFT CURVES vs TEST RESULTS



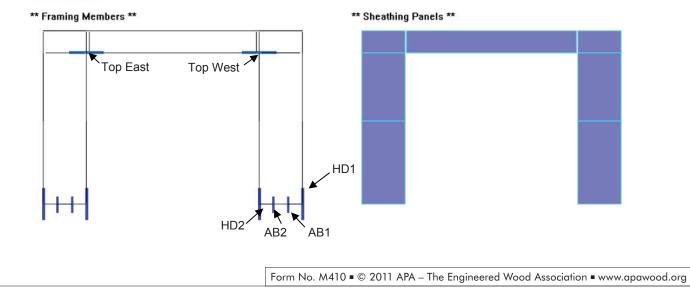
WALL #9 - LOAD-DRIFT TEST RESULTS vs MODEL

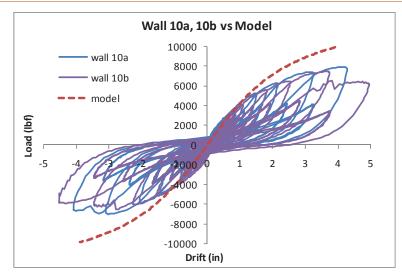

FIGURE 32


WALL #9 - MODEL PREDICTED INTERNAL FORCES vs TEST RESULTS

Form No. M410
© 2011 APA – The Engineered Wood Association
www.apawood.org

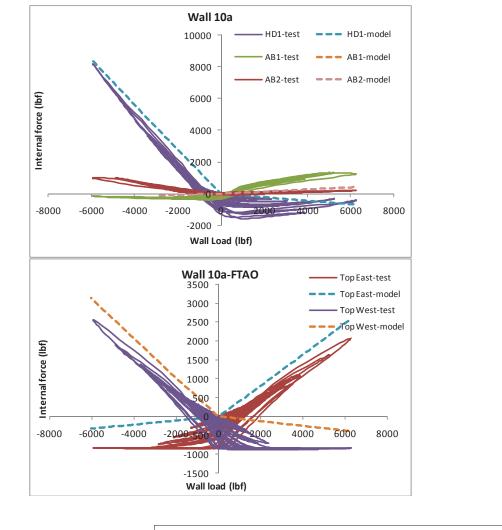
FIGURE 32 (Continued)




FIGURE 33

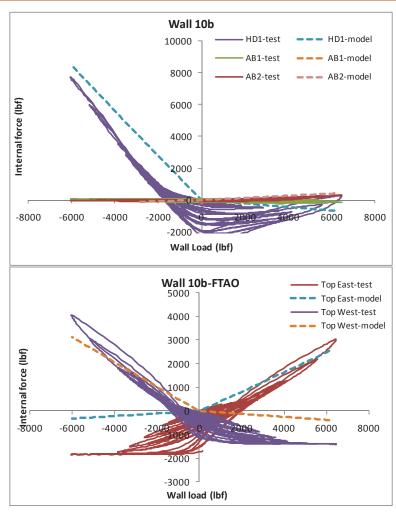
WALL #10 - WALL2D MODEL

APA-WALL#10



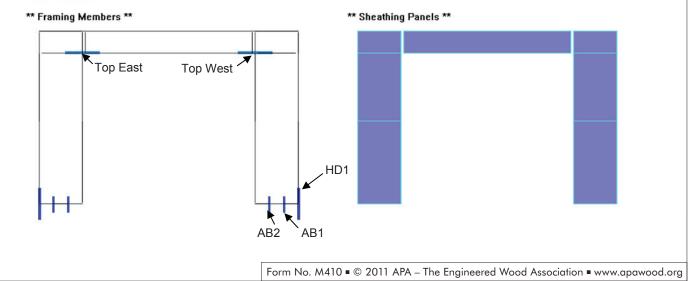
WALL #10 - MODEL PREDICTED LOAD-DRIFT CURVES vs TEST RESULTS

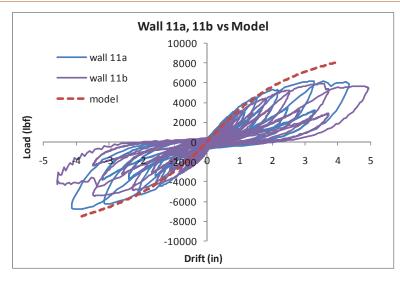
FIGURE 35


WALL #10 - MODEL PREDICTED INTERNAL FORCES vs TEST RESULTS

Form No. M410 = © 2011 APA – The Engineered Wood Association = www.apawood.org

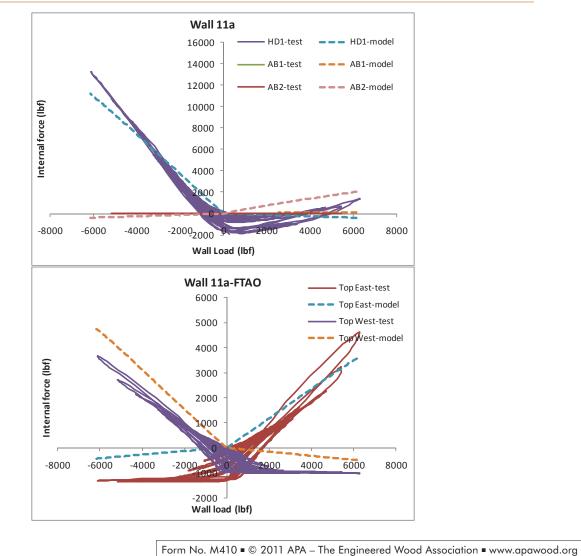
FIGURE 35 (Continued)



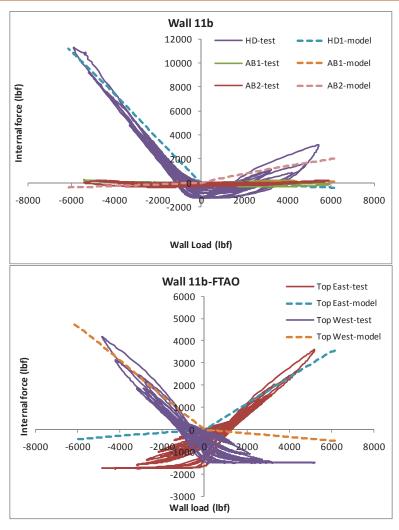

FIGURE 36

WALL #11 - WALL2D MODEL

APA-WALL#11



WALL #11 - MODEL PREDICTED LOAD-DRIFT CURVES vs TEST RESULTS


FIGURE 38

WALL #11 - MODEL PREDICTED INTERNAL FORCES vs TEST RESULTS

FIGURE 38 (Continued)

WALL #11 - MODEL PREDICTED INTERNAL FORCES vs TEST RESULTS

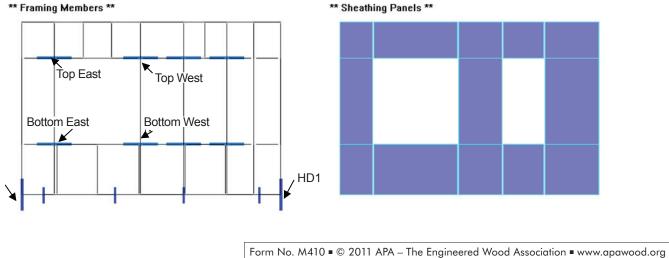
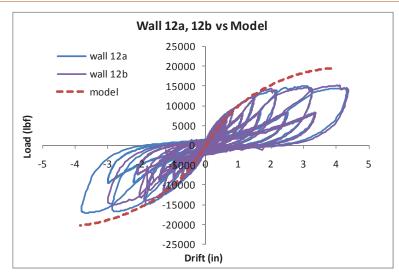
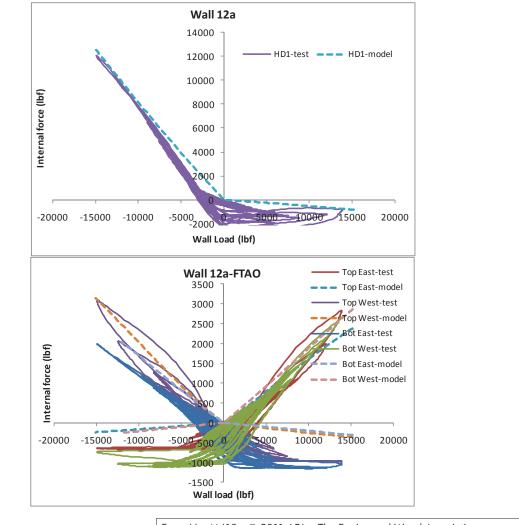


FIGURE 39

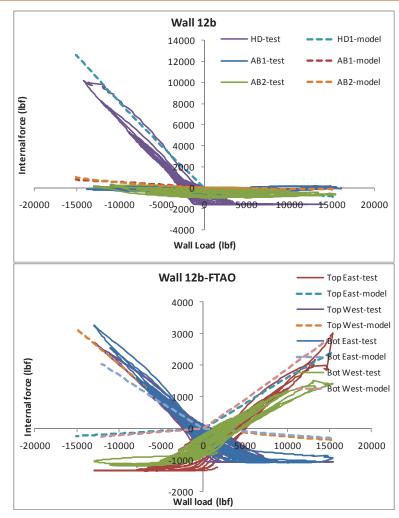

WALL #12 - WALL2D MODEL

** Framing Members **



WALL #12 - MODEL PREDICTED LOAD-DRIFT CURVES vs TEST RESULTS

FIGURE 41


WALL #12 - MODEL PREDICTED INTERNAL FORCES vs TEST RESULTS

Form No. M410
© 2011 APA – The Engineered Wood Association
www.apawood.org

FIGURE 41 (Continued)

2.5 SUMMARY AND DISCUSSIONS

The wood shear wall model WALL2D was developed to study the behavior of typical wood frame wall systems. Currently, the wall model lacks the ability to consider the degradation in shear walls caused by other failure modes except for the panel-frame nail connections. Such failure modes, including tearing and buckling of the sheathing panels as well as failure of framing members and framing connections, are uncommon in typical non-perforated shear walls under reverse cyclic loading. As observed in the perforated shear wall tests, these failures can indeed occur during loading. With continued application of loads, the wall further weakens and the load path within the wall can alter resulting in the changes of the measured hold down forces and FTAO. To take such behavior into consideration requires additional failure criteria to be developed and new computational schemes to update the system stiffness matrix during the load steps. As the current computer model could not recognize part of the wall has failed, it over predicted the ultimate capacity of these perforated wall systems. Although the WALL2D program is capable of estimating the behavior of shear walls under reversed cyclic loading, for the perforated shear wall cases we only ran the program under monotonic loading schemes. The modeling results showed that when the drifts of the walls went up to 4", the load-drift curves indicated high nonlinearity. In the shear wall tests, at this amount of wall deformation, significant damage in the nail connections, sheathing results and some framing connections have occurred.

For design purpose, we are interested in the wall response at the wall design capacity. In the U.S., a wall capacity of 870 lbf/ft (12.7 N/mm) is a typical tabulated value based on allowable stress design (Skaggs et al., 2010). Based on this value, the design capacity of the walls considered in this study was established by multiplying this unit shear capacity with the effective length of the wall (i.e., considering the walls with full-height segments). For wall 2 and wall 3, which are perforated walls with only two hold-downs installed on the outermost ends of the walls, their shear wall design capacity is further modified by an additional factor $C_0 = 0.93$. For the walls with FTAO metal straps, no C_0 adjustment is required. In this study, the model predicted hold-down forces and FTAO were compared against the test results at the wall design capacity level.

Table 1 shows the comparisons between the predicted hold-down forces and the test results. The prediction error range is from –20.6% to +48.7%. Out of the 12 cases, walls 1, 2, and 9 have the prediction errors of -20.6%, +22.5% and +19.0%, respectively. The case of wall 4 has a wide range of measured hold-down forces, which resulted in a prediction error of 48.7%. The rest of the cases had absolute prediction errors range 0.5% to 10.3%.

Table 2 shows the comparisons between the predicted metal strap forces around openings and the test results. The prediction error range is from -38.2% to +44.2%. The case of wall 4 has a wide range of measured FTAO values, which resulted in a prediction error of 44.2%. Given the relatively high variability in the test data and the simplifications/assumptions in the computer model, the predicted errors in most cases seem to be reasonable. In design practice, it is of interest to evaluate the maximum FTAO value for the different walls at the design load capacity level to size the required hardware connection. Therefore, it is of interest to compare the test results with the computer model and simplified analog predictions.

Table 3 shows the maximum FTAO values from the test data in comparison with the values from the computer model and four "rational" design methods (Drag Strut, Cantilevered Beam, Coupled Beam, and Diekmann's method). The prediction error range of the computer model is -15.4% to +4.3%. The Drag Strut method can both under predict and over predict the maximum FTAO. The Cantilevered Beam, Coupled Beam, and Diekmann's methods on the other hand seem to be very conservative. Compared to test data and using the Diekmann's method as a base, a reduction correction factor of the order of 1.2 to 1.3 might be considered to account for the contribution of the framing and nail elements within the wall system. Diekmann's method however is not suitable to predict the FTAO in cases when the wall segment below the opening is not available as in the case of garage door opening.

It should be noted that the FTAO in Wall 6 with the wrapped around sheathing panel cannot be reasonable predicted by the simplified analog even with the correction factor. The limitation of WALL2D model is that it considers only the nonlinearity from panel-frame nail connections and does not consider the degradation caused by the nonlinearity or failure in sheathing panels, framing members and framing connections. Therefore, WALL2D over predicted the load-carrying capacity for some walls where significant nonlinear deformation occurred in the components. The peak load values predicted by WALL2D loaded up to the wall drift of 4" and the associated wall deformations are given in Table 4. Furthermore, in the cases of perforated shear walls, the modulus of elasticity of framing members also plays an important role in the distribution of internal forces in the system.

Although WALL2D model considers the modulus of elasticity values of framing members, it would be more precise if the modulus of elasticity of the framing members used in the wall tests can be non-destructively established apriori for the model verification purpose. The complicated load application system and the force measurement devices also created significant challenges in the modeling process. Overall, the WALL2D predictions of FTAO agreed reasonably well with the test results at the shear wall design level. In future research, parametric studies can be further conducted by this model to study the FTAO of various perforated walls with different opening sizes and different metal hardware at the wall design level, providing more information for rational designs of perforated shear walls. Also, WALL2D can be further extended to address the nonlinearities and failure mechanisms currently ignored in the analysis so that the FTAO behavior of such wall systems can be fully captured under high structural demands (high loads and reversed cycles). With a fine tuned analysis model, studies can also be conducted to consider the FTAO behavior of perforated wall systems under dynamic conditions.

TABLE 1

MODEL PREDICTED HOLD-DOWN FORCES vs TEST RESULTS

	460	Effective Wall		Hold-Down Forces at Wall Design Capacity		
	ASD (plf)	Length (ft)	Wall Capacity (lbf)	Outboard (lbf)	Inboard (lbf)	
Wall 1a-test	870	4.5	3915	7881	5313	
Wall 1b-test	870	4.5	3915	6637	6216	
Wall 1 test avg	870	4.5	3915	7259	5765	
Wall 1-model	870	4.5	3915	5765	5673	
Error				-20.6%	+1.6%	
Wall 2a-test	870	4.5	3631	2216	n/a	
Wall 2b-test	870	4.5	3631	3248	n/a	
Wall 2 test avg	870	4.5	3631	2732		
Wall 2-model	870	4.5	3631	3347		
Error				+22.5%		
Wall 3a-test	870	4.5	3631	2602	n/a	
Wall 3b-test	870	4.5	3631	4090	n/a	
Wall 3 test avg	870	4.5	3631	3346		
Wall 3-model	870	4.5	3631	3202		
Error				-4.3%		
Wall 4a-test	870	4.5	3915	1140	n/a	
Wall 4b-test	870	4.5	3915	3674	n/a	
Wall 4c-test	870	4.5	3915	1336	n/a	
Wall 4d-test	870	4.5	3915	1598	n/a	
Wall 4 test avg	870	4.5	3915	1937		
Wall 4 model	870	4.5	3915	2882		
Error				48.7%		
Wall 5b-test	870	4.5	3915	5216	n/a	
Wall 5c-test	870	4.5	3915	4795	n/a	
Wall 5d-test	870	4.5	3915	4413	n/a	
Wall 5 test avg	870	4.5	3915	4808		
Wall 5 model	870	4.5	3915	4418		
Error				-8.1%		
Wall 6a-test	870	4.5	3915	1573	n/a	
Wall 6b-test	870	4.5	3915	1285	n/a	
Wall 6 test avg	870	4.5	3915	1429		
Wall 6 model	870	4.5	3915	1529		
Error				+7.0%		
Wall 7a-test	870	8	6960	6024	3677	
Wall 7b-test	870	8	6960	6577	3744	
Wall 7 test avg	870	8	6960	6301	3761	
Wall 7 model	870	8	6960	6093	5108	
Error				-10.3%	+35.8%	

Evaluation of Force Transfer Around Openings – Experimental and Analytical Findings

TABLE 1 (Continued)

MODEL PREDICTED HOLD-DOWN FORCES vs TEST RESULTS

		Effective Wall		Hold-Down Forces at Wall Design Capacity		
	ASD (plf)	Length (ft)	Wall Capacity (lbf)	Outboard (lbf)	Inboard (lbf)	
Wall 8a-test	870	8	6960	4805	n/a	
Wall 8b-test	870	8	6960	5548	n/a	
Wall 8 test avg	870	8	6960	5176		
Wall 8 model	870	8	6960	5149		
Error				0.5%		
Wall 9a-test	870	8	6960	4679	n/a	
Wall 9b-test	870	8	6960	5212	n/a	
Wall 9 test avg	870	8	6960	4945		
Wall 9-model	870	8	6960	5887		
Error				+19.0%		
Wall 10a-test	870	4	3480	5311	5690	
Wall 10b-test	870	4	3480	4252	3731	
Wall 10 test avg	870	4	3480	4781	4710	
Wall 10 model	870	4	3480	4870	4138	
Error				+1.9%	-12.1%	
Wall 11a-test	870	4	3480	6449	n/a	
Wall 11b-test	870	4	3480	5843	n/a	
Wall 11 test avg	870	4	3480	6146		
Wall 11 model	870	4	3480	6441		
Error				+4.8%		
Wall 12a-test	870	6	5220	2856	n/a	
Wall 12b-test	870	6	5220	3458	n/a	
Wall 12 test avg	870	6	5220	3157		
Wall 12 model	870	6	5220	3238		
Error				+2.6%		

TABLE 2

MODEL PREDICTED FTAO vs TEST RESULTS

	465	Effective Wall		FTAO at wall a	lesign capacity
Wall	ASD (plf)	Length (ft)	Wall Capacity (lbf)	Top (lbf)	Bottom (lbf)
Wall 4a-test	870	4.5	3915	687	1485
Wall 4b-test	870	4.5	3915	560	1477
Wall 4c-test	870	4.5	3915	668	1316
Wall 4d-test	870	4.5	3915	1006	1665
Wall 4 test avg	870	4.5	3915	730	1486
Wall 4 model	870	4.5	3915	1053	1401
Error				44.2%	-5.7%
Wall 5b-test	870	4.5	3915	1883	1809
Wall 5c-test	870	4.5	3915	1611	1744
Wall 5d-test	870	4.5	3915	1633	2307
Wall 5 test avg	870	4.5	3915	1709	1953
Wall 5 model	870	4.5	3915	2038	1946
Error				19.2%	-0.4%
Wall 6a-test	870	4.5	3915	421	477
Wall 6b-test	870	4.5	3915	609	614
Wall 6 test avg	870	4.5	3915	515	546
Wall 6 model	870	4.5	3915	462	337
Error				-10.3%	-38.2%
Wall 8a-test	870	8	6960	985	1347
Wall 8b-test	870	8	6960	1493	1079
Wall 8 test avg	870	8	6960	1239	1213
Wall 8 model	870	8	6960	1292	1047
Error				4.3%	-13.7%
Wall 9a-test	870	8	6960	1675	1653
Wall 9b-test	870	8	6960	1671	1594
Wall 9 test avg	870	8	6960	1673	1623
Wall 9-model	870	8	6960	1627	1228
Error				-2.7%	-24.3%
Wall 10a-test	870	4	3480	1580	n/a
Wall 10b-test	870	4	3480	2002	n/a
Wall 10 test avg	870	4	3480	1791	n/a
Wall 10 model	870	4	3480	1787	n/a
Error				-0.2%	n/a
Wall 11a-test	870	4	3480	2466	n/a
Wall 11b-test	870	4	3480	3062	n/a
Wall 11 test avg	870	4	3480	2764	n/a
Wall 11 model	870	4	3480	2700	n/a
Error				-2.3%	n/a

Form No. M410 • © 2011 APA – The Engineered Wood Association • www.apawood.org

TABLE 2 (Continued)

MODEL PREDICTED FTAO vs TEST RESULTS

		Effective Wall		FTAO at wall design capacity		
Wall	ASD (plf)	Length (ft)	Wall Capacity (lbf)	Top (lbf)	Bottom (lbf)	
Wall 12a-test	870	6	5220	807	1163	
Wall 12b-test	870	6	5220	1083	1002	
Wall 12 test avg	870	6	5220	945	1082	
Wall 12 model	870	6	5220	824	966	
Error				-12.8%	-10.7%	

TABLE 3

COMPUTER MODEL AND SIMPLIFIED ANALOG PREDICTED MAXIMUM FTAO vs TEST RESULTS

	Max FTAO at Wall Capacity (lbf)						
Wall	Test Results	Computer Model	Drag Strut	Cantilever	Couple Beam	Diekmann	
4	1486	1401 -5.7%	1223 -17.7%	4474 201.1%	2796 88.2%	1958 31.7%	
5	1953	2038 4.4%	1223 -37.4%	6152 215.0%	3845 96.9%	3263 67.1%	
6	546	462 -15.4%	1223 124.1%	4474 719.5%	2796 412.2%	3263 497.5%	
8	1239	1292 4.3%	1160 -6.4%	7954 542.0%	2651 114.0%	1856 49.8%	
9	1673	1627 -2.7%	1160 -30.7%	10937 553.7%	3646 117.9%	3093 84.9%	
10	1791	1787 0.2%	1160 -35.2%		-	9280 418.1%	
11	2764	2700 -2.3%	1160 -58.0%			9280 235.7%	
12	1082	966 -10.7%			-		

TABLE 4

COMPUTER MODEL PREDICTED PEAK LOADS AND THE CORRESPONDING WALL DRIFTS

Wall	Computer Model Peak load (lbf)	Wall drift at peak load (in.)		
1	8029	4.0		
2	14991	4.0		
3	17049	4.0		
4	18081	2.85		
5	14017	4.0		
6	21973	2.98		
7	17761	3.11		
8	25758	3.43		
9	21823	3.50		
10	9881	4.0		
11	8018	4.0		
12	19468	4.0		

147

2.6 REFERENCES

Canadian Standard Association (CSA). 2001. Engineering Design in Wood. CSA, Toronto, On, Canada.

Diekmann, E.F. 1997. "Diaphragms and Shearwalls" in: *Wood Engineering and Construction Handbook.* 3rd ed. K. F. Faherty and T. G. Williamson, eds. McGraw-Hill, New York. pp. 8.47–8.79.

Diekmann, E. F. 2005. "Discussion and Closure of Design of Wood Structural Panel Shear Walls with Openings: A Comparison of Methods." *Wood Design Focus*. (15)2:14–15.

Foschi, O. R. Li, M. and Lam, F. 2010. "Modeling Hysteretic Behavior of Panel-Frame Nail Connections in Wood Construction." *ASCE Journal of Structural Engineering* (under review).

Intel Corporation. 2005. Intel® Fortran Compiler Integration for Microsoft Visual Studio. Version 10.1.4160.2005.

Kolba, A. 2000. *The Behavior of Wood Shear Walls Designed Using Diekmann's Method and Subjected to Static In-Plane Loading*. Thesis submitted in partial fulfillment for the degree of Doctor of Philosophy. Marquette University.

Lam, F. 2010. Review of Common Methods to Estimate Force Transfer around Openings for Wood Frame Shearwalls. Report prepared for APA – The Engineered Wood Association. University of B.C. Canada

Li, M., Foschi, R. O. and Lam, F. 2011. "Modeling Hysteretic Behavior of Wood Shear Walls with a Protocol-Independent Nail Connection Algorithm." *ASCE Journal of Structural Engineering* (under review).

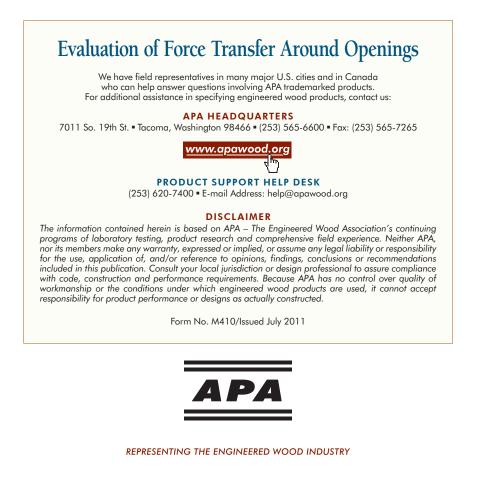
Martin, Z. 2005. "Design of Wood Structural Panel Shear Walls with Openings: A Comparison of Methods." *Wood Design Focus*. (15)1:18–20.

Robertson, A. A. 2004. *Comparison of Methodologies for Designing of Force Transfer around Openings in Plywood Shear Walls.* Presentation in the 2004 Forest Products Society Meeting on Woodframe Housing Durability and Disaster Issues. Session III: Disaster Mitigation. Las Vegas, Nevada, USA.

Simpson Strong-Ties Co., Inc. 2010. http://www.strongtie.com/products/alpha_list.html.

Skaggs, T., Yeh, B. J., Lam, F., Rammer, D. and Wacker, J. 2010. Full-Scale Shear Wall Tests for Force Transfer around Openings. CIB-W18/43–15-3, Nelson, New Zealand.

Thomas, W. H. 2003. "Poisson's Ratios of an Oriented Strand Board." Wood Science and Technology, 37:259–268.


ABOUT APA

APA – *The Engineered Wood Association* is a nonprofit trade association of and for structural wood panel, glulam timber, wood I-joist, laminated veneer lumber and other engineered wood product manufacturers. Based in Tacoma, Washington, APA represents approximately 150 mills throughout North America, ranging from small, independently owned and operated companies to large integrated corporations.

Always insist on engineered wood products bearing the **mark of quality** – the APA or *APA EWS* trademark. Your APA engineered wood purchase is not only your highest possible assurance of product quality, but an investment in the many trade services that APA provides on your behalf. The Association's trademark appears only on products manufactured by member mills and is the manufacturer's assurance that the product conforms to the standard shown on the trademark.

For panels, that standard may be an APA performance standard, the Voluntary Product Standard PS 1-09, *Structural Plywood* or Voluntary Product Standard PS 2-10, *Performance Standard for Wood-Based Structural-Use Panels*. Panel quality of all APA trademarked products is subject to verification through APA audit.

APA's services go far beyond quality testing and inspection. Research and promotion programs play important roles in developing and improving plywood and other panel construction systems, and in helping users and specifiers to better understand and apply engineered wood products. For more information on wood construction systems, contact *APA – The Engineered Wood Association*, 7011 S. 19th St., Tacoma, Washington 98466, or visit the Association's website at www.apawood.org.

