Shelton Structural Glued Laminated Timber
PR-L321

Shelton Structures Inc. dba Shelton Lam and Deck

Revised March 9, 2020

1. Basis of the product report:
 • 2018, 2015, and 2012 International Building Code (IBC): Sections 104.11 Alternative materials and 2303.1.3 Structural glued laminated timber
 • 2018 and 2015 International Residential Code (IRC): Sections R104.11 Alternative materials, and R502.1.3, R602.1.3, and R802.1.2 Structural glued laminated timber
 • 2012 IRC: Sections R104.11 Alternative materials, and R502.1.5, R602.1.2, and R802.1.4 Structural glued laminated timber
 • ASTM D3737-12 and D3737-08 recognized by the 2018 and 2015 IBC and IRC, and 2012 IRC and IRC, respectively

2. Product description:
 Shelton glulam columns are manufactured in accordance with ANSI A190.1 using Combination 22 layup recognized in the 2015 ANSI 117 Standard Specification for Structural Glued Laminated Timber of Softwood Species and 2018 National Design Specification (NDS) Supplement. It is manufactured in nominal widths of 3-5/16 to 7-1/16 inches, depths ranging from 3-5/16 to 7-1/16 inches, and lengths up to 16 feet.

3. Design properties:
 Table 1 lists the allowable design properties for Shelton glulam columns of a solid, rectangular or square cross section.

4. Product installation:
 Shelton glulam columns shall be installed in accordance with the recommendations provided by the manufacturer and APA Construction Guide: Glulam Connection Details, Form T300 (www.apawood.org/resource-library).

5. Fire-rated assemblies:
 Fire-rated assemblies shall be constructed in accordance with the recommendations provided by the manufacturer and APA Design/Construction Guide: Fire-Rated Systems, Form W305 (see link above). For one- or two-hour rated glulam columns, the Shelton glulam columns shall be constructed in accordance with ANSI A190.1 and designed in accordance with the recommendations provided by the manufacturer and APA Technical Note: Calculating Fire Resistance of Glulam Beams and Columns, Form Y245 (see link above) or Chapter 16 of the 2018 NDS.

6. Limitations:
 a) Shelton glulam columns shall be designed in accordance with the code using the design properties specified in this report.
 b) Shelton glulam columns shall have a minimum depth of 3-5/16 inches and a maximum depth of 7-1/16 inches.
 c) Shelton glulam columns are produced at Shelton Structures Inc. dba Shelton Lam and Deck, Chehalis, WA facilities under a quality assurance program audited by APA.
d) This report is subject to re-examination in one year.

7. Identification:
Shelton glulam columns described in this report are identified by a label bearing the manufacturer's name (Shelton Lam & Deck) and/or trademark, the APA assigned plant number (1049), the product standard (ANSI A190.1), the APA logo, the combination symbol, the report number PR-L321, and a means of identifying the date of manufacture.
Table 1. Allowable Design Values for Shelton Glulam Columns for Normal Duration of Load *(1,2)*

<table>
<thead>
<tr>
<th>Combination Symbol</th>
<th>Species(*)</th>
<th>Grade</th>
<th>Modulus of Elasticity(3)</th>
<th>Axially Loaded</th>
<th>Bending about Y-Y Axis</th>
<th>Bending about X-X Axis</th>
<th>Fasteners</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tension Parallel to Grain</td>
<td>Compression Parallel to Grain</td>
<td>Loaded Parallel to Wide Faces of Laminations</td>
<td>Loaded Perpendicular to Wide Faces of Laminations</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 or More Lams</td>
<td>4 or More Lams</td>
<td>2 or 3 Lams</td>
<td>4 or More Lams</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E_{axial} (10^6 psi)</td>
<td>0.95 E_{axial} (10^6 psi)</td>
<td>$E_{\text{axial min}}$ (10^6 psi)</td>
<td>F_{vL} (psi)</td>
</tr>
<tr>
<td>22</td>
<td>SW(1)</td>
<td>L3</td>
<td></td>
<td>1.1</td>
<td>1.0</td>
<td>0.53</td>
<td>315</td>
</tr>
<tr>
<td>Wet-use factors</td>
<td>0.833</td>
<td>0.53</td>
<td></td>
<td>0.8</td>
<td>0.8</td>
<td>0.73</td>
<td>0.8</td>
</tr>
</tbody>
</table>

The tabulated allowable design values are applicable only to columns made with a solid, rectangular or square cross section and are for normal duration of loading. For other durations of loading, see applicable building code. The tabulated design values are for dry conditions of use. For wet conditions of use, multiply the tabulated values by the factors shown at the bottom of the table.

(1) SW = Softwood species.
(2) The tabulated E values include axial modulus of elasticity (E_{axial}), 0.95 E_{axial}, and E for column stability calculation ($E_{\text{axial min}}$, NDS 3.7.1). For calculating column deflections due to lateral loads, the tabulated 0.95 E_{axial} values shall be used unless the shear deflection is determined in addition to bending deflection based on the tabulated E_{axial}.
(3) For non-prismatic members, notched members, members subject to impact or cyclic loading, or shear design of bending members at connections (NDS 3.4.3.3), the tabulated F_{vL} and F_{vL} values shall be multiplied by 0.72.
(4) The tabulated F_{vL} values are for members of 4 or more lams. The tabulated F_{vL} values shall be multiplied by a factor of 0.95 for 3 lams and 0.84 for 2 lams.
(5) The values of F_{vL} are based on members 5-1/8 inches in width by 12 inches in depth by 21 feet in length. For members with a larger volume, F_{vL} shall be multiplied by a volume factor, $C_v = (5.125/b)^{1/10} (12/d)^{1/10} (21/L)^{1/10}$, where b is the beam width (in.), d is the beam depth (in.), and L is the beam length between the points of zero moment (ft).
(6) When the member depth is greater than 15 inches, the tabulated F_{bx} values shall be multiplied by a factor of 0.88.
(7) When Western Cedars, Western Cedars (North), Western White Pine, and Eastern White Pine are used in combinations for Softwood Species (SW), the design value for modulus of elasticity shall be reduced by 100,000 psi. When Coast Sitka Spruce, Coast Species, Western White Pine, and Eastern White Pine are used in combinations for Softwood Species (SW), tabulated design values for shear parallel to grain, F_{vL} and F_{vL}, shall be reduced by 10 psi, before applying any other adjustments.
APA – The Engineered Wood Association is an approved national standards developer accredited by American National Standards Institute (ANSI). APA publishes ANSI standards and Voluntary Product Standards for wood structural panels and engineered wood products. APA is an accredited certification body under ISO/IEC 17065 by Standards Council of Canada (SCC), an accredited inspection agency under ISO/IEC 17020 by International Code Council (ICC) International Accreditation Service (IAS), and an accredited testing organization under ISO/IEC 17025 by IAS. APA is also an approved Product Certification Agency, Testing Laboratory, Quality Assurance Entity, and Validation Entity by the State of Florida, and an approved testing laboratory by City of Los Angeles.

APA – THE ENGINEERED WOOD ASSOCIATION
HEADQUARTERS
7011 So. 19th St. • Tacoma, Washington 98466
Phone: (253) 565-6600 • Fax: (253) 565-7265 • Internet Address: www.apawood.org

PRODUCT SUPPORT HELP DESK
(253) 620-7400 • E-mail Address: help@apawood.org

DISCLAIMER
APA Product Report® is a trademark of APA – The Engineered Wood Association, Tacoma, Washington. The information contained herein is based on the product evaluation in accordance with the references noted in this report. Neither APA, nor its members make any warranty, expressed or implied, or assume any legal liability or responsibility for the use, application of, and/or reference to opinions, findings, conclusions, or recommendations included in this report. Consult your local jurisdiction or design professional to assure compliance with code, construction, and performance requirements. Because APA has no control over quality of workmanship or the conditions under which engineered wood products are used, it cannot accept responsibility for product performance or designs as actually constructed.