## IB Series I-J oists

IB EWP Inc.
Products: IB Series Prefabricated Wood I-Joists
IB EWP Inc., 480 rue Jocelyn-Bastille C.P. 10, Pohénégamook, Quebec, G0L 1J0, Canada
www.ibewp.com

1. Basis of the product report:

- 2020 National Building Code of Canada (NBC): Clause 1.2.1.1 of Division A, and Clauses 4.1, 4.3.1.1, and 9.23.4.2 of Division B
- CSA O86-19 Engineering Design in Wood
- ASTM D5055-16 recognized in CAN/CSA O86-19
- APA PRI-400CA Performance Standard for Residential I-Joists (Limit States Design)
- APA Reports T2000P-42A, T2001P-53, T2001P-63, T2001P-78, T2002P-65, T2003P-17, T2003P-18A, T2003P-52, T2005P-01A, T2005P-40B, T2005P-99A, T2006P-36, T2006P43, T2006P-53, T2008P-37, T2009P-34A, T2010P-06, T2010P-49A, T2013P-31, T2014P-10, T2019P-25A, T2019P-40, and T2021P-34, and other qualification data

2. Product description:

IB Series I-Joists covered in this report, as described in Table 1, are made with lumber flanges and OSB web in accordance with the in-plant manufacturing standard approved by APA.
3. Design properties:

Tables 2 through 4 list the Limit States Design (LSD) properties for IB Series I-Joists. The maximum design spans for IB Series I-Joists shall be in accordance with the recommendations provided by the manufacturer (www.ibewp.com) and with APA Standard PRI-400CA, Performance Standard for Residential I-Joists (Limit States Design) (www.apawood.org/resource-library), for depths contained in the PRI Series.
4. Product installation:

IB Series I-Joists shall be installed in accordance with the recommendations provided by the manufacturer (see link above). Permissible web holes and cantilever reinforcements shall be in accordance with the recommendations provided by the manufacturer.
5. Fire-rated assemblies:

Fire-rated assemblies shall be constructed in accordance with the recommendations provided by the manufacturer (see link above), APA Product Report PR-S330, or Table 9.10.3.1.-B of the NBC or the calculation method specified in Appendix D-2.3 of the NBC.
6. Limitations:
a) IB Series I-Joists shall be designed in accordance with the code using the design properties specified in this report.
b) IB Series I-Joists are limited to dry service conditions as defined in CSA O86, at which the average equilibrium moisture content of solid-sawn lumber over a year is $15 \%$ or less and does not exceed 19\%.
c) All IB Series I-Joists are produced at IB EWP Inc. facility in Pohénégamook, Quebec, under a quality assurance program audited by APA.
d) This report is subject to re-examination in one year.
7. Identification:

The IB Series prefabricated wood I-joists described in this report are identified by a label bearing the manufacturer's name (IB EWP Inc.) and/or trademark, the APA assigned plant number (1135), the I-joist depth and series, the APA logo, the report number PR-L330 or PR-L330C, and a means of identifying the date of manufacture.

Table 1. Description of IB Series I-Joists ${ }^{(\mathrm{a})}$

| Joist <br> Series | Joist Depths, mm (in.) | Flanges |  |  | Web |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Material | Dimension |  | Material | Thickness, mm (in.) |
|  |  |  | Depth, mm (in.) | Width, mm (in.) |  |  |
| IB400 | $\begin{gathered} 200-406 \\ (7-7 / 8-16) \end{gathered}$ | Proprietar y SPF | $\begin{gathered} 38 \\ (1-1 / 2) \\ \hline \end{gathered}$ | $\begin{gathered} 64 \\ (2-1 / 2) \end{gathered}$ | OSB | $\begin{gathered} 9.5 \\ (3 / 8) \end{gathered}$ |
| IB600 | $\begin{gathered} 200-508 \\ (7-7 / 8-20) \\ \hline \end{gathered}$ | MSR | $\begin{gathered} 38 \\ (1-1 / 2) \\ \hline \end{gathered}$ | $\begin{gathered} 64 \\ (2-1 / 2) \\ \hline \end{gathered}$ | OSB | $\begin{gathered} 9.5 \\ (3 / 8) \\ \hline \end{gathered}$ |
| IB700 | $\begin{gathered} 241-406 \\ (9-1 / 2-16) \\ \hline \end{gathered}$ | MSR | $\begin{gathered} 38 \\ (1-1 / 2) \\ \hline \end{gathered}$ | $\begin{gathered} 89 \\ (3-1 / 2) \\ \hline \end{gathered}$ | OSB | $\begin{gathered} 9.5 \\ (3 / 8) \\ \hline \end{gathered}$ |
| IB800 | $\begin{gathered} 200-508 \\ (7-7 / 8-20) \end{gathered}$ | MSR | $\begin{gathered} 38 \\ (1-1 / 2) \end{gathered}$ | $\begin{gathered} 89 \\ (3-1 / 2) \end{gathered}$ | OSB | $\begin{gathered} 9.5 \\ (3 / 8) \end{gathered}$ |
| IB900x | $\begin{gathered} 200-610 \\ (7-7 / 8-24) \end{gathered}$ | MSR | $\begin{gathered} 38 \\ (1-1 / 2) \end{gathered}$ | $\begin{gathered} 89 \\ (3-1 / 2) \end{gathered}$ | OSB | $\begin{gathered} 11 \\ (7 / 16) \end{gathered}$ |

(a) Referenced dimensions are nominal. Tolerances are as specified in the in-plant quality manual.

Table 2. Factored Resistances of IB Series I-Joists ${ }^{\left({ }^{(2)}\right.}$

| Joist Series | Joist Depth, mm (in.) | $\begin{gathered} \text { Also } \\ \text { Qualified } \\ \text { for } \end{gathered}$ | $\begin{gathered} \mathrm{EI} \mathrm{I}^{(\mathrm{b}}, \\ 10^{6} \mathrm{kN}-\mathrm{mm}^{2} \\ \left(10^{6} \mathrm{lbf}-\mathrm{in} .^{2}\right) \end{gathered}$ | $\begin{aligned} & \hline \mathrm{M}_{\mathrm{r}^{(\mathrm{c})},} \\ & \mathrm{N}-\mathrm{m} \\ & (\mathrm{lbf-ft)} \end{aligned}$ | $\begin{gathered} \hline \mathrm{V}_{r}^{(\mathrm{d})}, \\ \mathrm{N} \\ (\mathrm{lbf}) \end{gathered}$ | $\begin{gathered} \hline \mathrm{VLC}_{1}^{(\mathrm{e})}, \\ \mathrm{kN} / \mathrm{m} \\ \text { (plf) } \end{gathered}$ | $\begin{gathered} \mathrm{K}^{(t)}, \\ 10^{6} \mathrm{~N} \\ \left(10^{6} \mathrm{lbf}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IB400 | 200 (7-7/8) | NA | 353 (123) | 5,040 (3,717) | $8,109(1,823)$ | 42.3 (2,900) | 18.24 (4.10) |
|  | 219 (8-5/8) | NA | 439 (153) | 5,626 (4,150) | 8,109 (1,823) | 42.3 ( 2,900 ) | 19.97 (4.49) |
|  | 235 (9-1/4) | NA | 531 (185) | $6,122(4,515)$ | 8,109 (1,823) | 42.3 ( 2,900 ) | 21.40 (4.81) |
|  | 241 (9-1/2) | PRI-40 | 568 (198) | 6,314 $(4,657)$ | 8,320 $(1,870)$ | 42.3 ( 2,900 ) | 21.97 (4.94) |
|  | 286 (11-1/4) | NA | 849 (296) | 7,690 ( 5,672 ) | $9,864(2,218)$ | 42.3 ( 2,900 ) | 26.02 (5.85) |
|  | 302 (11-7/8) | PRI-40 | 964 (336) | 8,186 (6,038) | 10,391 (2,336) | 42.3 ( 2,900 ) | 27.49 (6.18) |
|  | 356 (14) | PRI-40 | 1,418 (494) | 9,854 (7,268) | 12,286 (2,762) | 42.3 (2,900) | 32.38 (7.28) |
|  | 406 (16) | PRI-40 | 1,931 (673) | 11,422 $(8,424)$ | 14,042 (3,157) | 42.3 (2,900) | 37.01 (8.32) |
| IB600 | 200 (7-7/8) | NA | 416 (145) | 6,945 (5,123) | 8,109 (1,823) | 42.3 (2,900) | 18.24 (4.10) |
|  | 219 (8-5/8) | NA | 519 (181) | 7,757 (5,721) | 8,109 (1,823) | 42.3 ( 2,900 ) | 19.97 (4.49) |
|  | 235 (9-1/4) | NA | 631 (220) | 8,434 (6,221) | 9,478 (2,131) | 42.3 (2,900) | 21.40 (4.81) |
|  | 241 (9-1/2) | PRI-60 | 674 (235) | $8,704(6,420)$ | 9,619 (2,162) | 42.3 ( 2,900 ) | 21.97 (4.94) |
|  | 286 (11-1/4) | NA | 1,022 (356) | 10,598 (7,817) | 10,637 (2,391) | 42.3 (2,900) | 26.02 (5.85) |
|  | 302 (11-7/8) | PRI-60 | 1,145 (399) | 11,275 (8,316) | 11,023 (2,478) | 42.3 (2,900) | 27.49 (6.18) |
|  | 356 (14) | PRI-60 | 1,679 (585) | 13,575 (10,012) | 12,286 (2,762) | 42.3 (2,900) | 32.38 (7.28) |
|  | 406 (16) | PRI-60 | 2,293 (799) | 15,740 (11,609) | 14,042 (3,157) | 42.3 ( 2,900 ) | 37.01 (8.32) |
|  | 457 (18) | NA | 3,002 (1,046) | 17,803 (13,131) | 15,797 (3,551) | $37.0(2,538)$ | 41.64 (9.36) |
|  | 508 (20) | NA | 3,742 (1,304) | 19,697 (14,528) | 17,552 (3,946) | $31.7(2,175)$ | 46.26 (10.40) |
| IB700 | 241 (9-1/2) | NA | 775 (270) | 8,941 (6,595) | 9,829 (2,210) | 42.3 (2,900) | 21.97 (4.94) |
|  | 302 (11-7/8) | NA | 1,311 (457) | 11,590 (8,549) | 11,374 (2,557) | 42.3 (2,900) | 27.49 (6.18) |
|  | 356 (14) | NA | 1,917 (668) | 13,958 (10,295) | 12,743 (2,865) | 42.3 (2,900) | 32.38 (7.28) |
|  | 406 (16) | NA | 2,600 (906) | 16,179 $(11,933)$ | 14,042 (3,157) | $42.3(2,900)$ | 37.01 (8.32) |

(Footnotes on following page)

Table 2. Factored Resistances of IB Series I-Joists ${ }^{\text {(a) }}$ (Continued)

| Joist Series | Joist Depth, mm (in.) | Also Qualified for | $\begin{gathered} \mathrm{El}^{(\mathrm{b})}, \\ 10^{6} \mathrm{kN}-\mathrm{mm}^{2} \\ \left(10^{6} \mathrm{lbf}-\mathrm{in}^{2}{ }^{2}\right) \end{gathered}$ | $\begin{gathered} \mathrm{Mr}^{(\mathrm{c})}, \\ \mathrm{N}-\mathrm{m} \\ (\mathrm{lbf}-\mathrm{ft}) \end{gathered}$ | $\begin{gathered} \mathrm{V}_{\mathrm{r}}^{(\mathrm{d})}, \\ \mathrm{N} \\ (\mathrm{lbf}) \end{gathered}$ | $\mathrm{VLC}_{\mathrm{r}^{(e)}}$, $\mathrm{kN} / \mathrm{m}$ (plf) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IB800 | 200 (7-7/8) | NA | 585 (204) | 9,831 (7,252) | 8,109 (1,823) | 42.3 (2,900) | 18.24 (4.10) |
|  | 219 (8-5/8) | NA | 729 (254) | 10,981 (8,100) | 8,109 (1,823) | 42.3 (2,900) | 19.97 (4.49) |
|  | 235 (9-1/4) | NA | 881 (307) | 11,940 (8,806) | 9,759 (2,194) | $42.3(2,900)$ | 21.40 (4.81) |
|  | 241 (9-1/2) | NA | 936 (326) | 12,324 (9,090) | 9,864 (2,218) | 42.3 (2,900) | 21.97 (4.94) |
|  | 286 (11-1/4) | NA | 1,415 (493) | 15,007 (11,069) | 10,812 (2,431) | $42.3(2,900)$ | 26.02 (5.85) |
|  | 302 (11-7/8) | PRI-80 | 1,584 (552) | 15,965 (11,775) | 11,163 (2,510) | 42.3 (2,900) | 27.49 (6.18) |
|  | 356 (14) | PRI-80 | 2,316 (807) | 19,235 (14,187) | 12,883 (2,896) | $42.3(2,900)$ | 32.38 (7.28) |
|  | 406 (16) | PRI-80 | 3,139 (1,094) | 22,302 (16,449) | 14,533 (3,267) | $42.3(2,900)$ | 37.01 (8.32) |
|  | 457 (18) | NA | 4,147 $(1,445)$ | 25,109 (18,519) | 16,148 (3,630) | $38.3(2,625)$ | 41.64 (9.36) |
|  | 508 (20) | NA | 5,163 (1,799) | 27,917 (20,591) | 18,254 (4,104) | $34.4(2,356)$ | 46.26 (10.40) |
| IB900x | 200 (7-7/8) | NA | 620 (216) | 12,097 (8,923) | 9,548 (2,147) | 42.3 (2,900) | 22.42 (5.04) |
|  | 219 (8-5/8) | NA | 775 (270) | 13,507 (9,963) | 10,285 (2,312) | $42.3(2,900)$ | 24.55 (5.52) |
|  | 241 (9-1/2) | NA | 976 (340) | 15,164 (11,185) | 11,163 (2,510) | $42.3(2,900)$ | 27.04 (6.08) |
|  | 302 (11-7/8) | NA | 1,644 (573) | 19,651 (14,495) | 13,515 (3,038) | 42.3 (2,900) | 33.80 (7.60) |
|  | 356 (14) | PRI-90 | 2,399 (836) | 23,654 (17,447) | 14,919 (3,354) | 42.3 (2,900) | 39.85 (8.96) |
|  | 406 (16) | PRI-90 | 3,246 (1,131) | 27,431 (20,233) | 16,358 (3,677) | $42.3(2,900)$ | 45.55 (10.24) |
|  | 457 (18) | NA | 4,227 $(1,473)$ | 31,016 (22,877) | 17,622 (3,962) | $38.3(2,625)$ | 51.24 (11.52) |
|  | 508 (20) | NA | 5,349 (1,864) | 34,331 (25,322) | 18,921 (4,254) | $34.4(2,356)$ | 56.94 (12.80) |
|  | 559 (22) | NA | 6,612 (2,304) | 37,611 (27,742) | 20,185 (4,538) | $26.5(1,813)$ | 62.63 (14.08) |
|  | 610 (24) | NA | 8,018 (2,794) | 40,847 (30,129) | 21,484 (4,830) | $26.5(1,813)$ | 68.32 (15.36) |

(a) All factored resistance values include the resistance factor specified in CSA-O86. The tabulated values are for the standard term of load duration ( $\mathrm{K}_{\mathrm{D}}=1.0$ ). All values, except for EI, $\mathrm{VLC}_{\mathrm{r}}$, and K , are permitted to be adjusted for other load durations as permitted by the code.
(b) Bending stiffness (EI) of the I-joist
(c) Factored moment resistance $\left(\mathrm{M}_{\mathrm{r}}\right)$ of the I-joist.
(d) Factored shear resistance $\left(\mathrm{V}_{\mathrm{r}}\right)$ of the I-joist.
${ }^{(e)}$ Factored uniform vertical load resistance $\left(\mathrm{VLC}_{\mathrm{r}}\right)$ of the I-joist.
${ }^{(f)}$ Coefficient of shear deflection (K). For calculating uniform load and center-point load deflections of the I-joists in a simple-span application, use Eqs. 1 and 2.

| Uniform Load: | $\delta=\frac{5 \omega L^{4}}{384 E I}+\frac{\omega L^{2}}{K}$ |
| :---: | :--- |
| Center-Point Load: | $\delta=\frac{P L^{3}}{48 E I}+\frac{2 P L}{K}$ |

where $\delta=$ calculated deflection ( mm or in.)
$P=$ unfactored concentrated load (kN or lbf),
EI = bending stiffness of the I-joist (kN-mm ${ }^{2}$ or lbf-in. ${ }^{2}$ ), and
$\omega=$ unfactored uniform load (kN/mm or lbf/in.),
$\mathrm{L}=$ design span (mm or in.),
$=$ coefficient of shear deflection (kN or lbf).

Table 3. Additional Factored Resistances of IB Series I-Joists ${ }^{(a, b, c)}$

| Joist <br> Series | Joist Depth, mm (in.) | Also Qualified for | Factored End Reactions, N (lbf) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 38 mm (1-1/2 in.) <br> Bearing |  | 44 mm (1-3/4 in.) <br> Bearing |  | 70 mm (2-3/4 in.) Bearing |  | 89 mm (3-1/2 in.) Bearing |  | 102 mm (4 in.) <br> Bearing |  |
|  |  |  | No B.S. | B.S. |
| IB400 | 200 (7-7/8) | NA | $\begin{gathered} 6,705 \\ (1,507) \\ \hline \end{gathered}$ | $\begin{gathered} 7,407 \\ (1,665) \\ \hline \end{gathered}$ | $\begin{gathered} 6,845 \\ (1,539) \\ \hline \end{gathered}$ | $\begin{gathered} 7,477 \\ (1,681) \\ \hline \end{gathered}$ | $\begin{gathered} 7,407 \\ (1,665) \\ \hline \end{gathered}$ | $\begin{gathered} 7,758 \\ (1,744) \\ \hline \end{gathered}$ | $\begin{gathered} 7,828 \\ (1,760) \\ \hline \end{gathered}$ | $\begin{gathered} 7,969 \\ (1,792) \\ \hline \end{gathered}$ | $\begin{gathered} 8,109 \\ (1,823) \\ \hline \end{gathered}$ | $\begin{gathered} 8,109 \\ (1,823) \\ \hline \end{gathered}$ |
|  | 219 (8-5/8) | NA | $\begin{gathered} 7,477 \\ (1,681) \end{gathered}$ | $\begin{gathered} 7,793 \\ (1,752) \end{gathered}$ | $\begin{gathered} 7,547 \\ (1,697) \end{gathered}$ | $\begin{gathered} 7,828 \\ (1,760) \end{gathered}$ | $\begin{gathered} 7,793 \\ (1,752) \end{gathered}$ | $\begin{gathered} 7,934 \\ (1,784) \end{gathered}$ | $\begin{gathered} 7,969 \\ (1,792) \end{gathered}$ | $\begin{gathered} 8,039 \\ (1,807) \\ \hline \end{gathered}$ | $\begin{gathered} 8,109 \\ (1,823) \end{gathered}$ | $\begin{gathered} 8,109 \\ (1,823) \\ \hline \end{gathered}$ |
|  | 235 (9-1/4) | NA | $\begin{gathered} 7,793 \\ (1,752) \\ \hline \end{gathered}$ | $\begin{gathered} 8,109 \\ (1,823) \end{gathered}$ | $\begin{gathered} 7,828 \\ (1,760) \\ \hline \end{gathered}$ | $\begin{gathered} 8,109 \\ (1,823) \end{gathered}$ | $\begin{gathered} 8,109 \\ (1,823) \\ \hline \end{gathered}$ | $\begin{gathered} 8,109 \\ (1,823) \\ \hline \end{gathered}$ | $\begin{gathered} 8,109 \\ (1,823) \\ \hline \end{gathered}$ |
|  | 241 (9-1/2) | PRI-40 | $\begin{gathered} 7,863 \\ (1,768) \\ \hline \end{gathered}$ | $\begin{gathered} 8,320 \\ (1,870) \\ \hline \end{gathered}$ | $\begin{gathered} 7,934 \\ (1,784) \\ \hline \end{gathered}$ | $\begin{gathered} 8,320 \\ (1,870) \\ \hline \end{gathered}$ |
|  | 286 (11-1/4) | NA | $\begin{gathered} 8,249 \\ (1,854) \\ \hline \end{gathered}$ | $\begin{gathered} 9,513 \\ (2,139) \\ \hline \end{gathered}$ | $\begin{gathered} 8,460 \\ (1,902) \\ \hline \end{gathered}$ | $\begin{gathered} 9,548 \\ (2,146) \\ \hline \end{gathered}$ | $\begin{gathered} 9,408 \\ (2,115) \\ \hline \end{gathered}$ | $\begin{gathered} 9,864 \\ (2,218) \\ \hline \end{gathered}$ |
|  | 302 (11-7/8) | PRI-40 | $\begin{gathered} 8,425 \\ (1,894) \\ \hline \end{gathered}$ | $\begin{gathered} 9,970 \\ (2,241) \\ \hline \end{gathered}$ | $\begin{gathered} 8,636 \\ (1,941) \\ \hline \end{gathered}$ | $\begin{aligned} & 10,040 \\ & (2,257) \\ & \hline \end{aligned}$ | $\begin{gathered} 9,619 \\ (2,162) \\ \hline \end{gathered}$ | $\begin{array}{r} 10,391 \\ (2,336) \\ \hline \end{array}$ | $\begin{aligned} & 10,285 \\ & (2,312) \end{aligned}$ | $\begin{array}{r} 10,391 \\ (2,336) \\ \hline \end{array}$ | $\begin{array}{r} 10,391 \\ (2,336) \\ \hline \end{array}$ | $\begin{array}{r} 10,391 \\ (2,336) \\ \hline \end{array}$ |
|  | 356 (14) | PRI-40 | $\begin{array}{r} 8,846 \\ (1,989) \\ \hline \end{array}$ | $\begin{array}{r} 11,444 \\ (2,573) \\ \hline \end{array}$ | $\begin{gathered} 9,092 \\ (2,044) \\ \hline \end{gathered}$ | $\begin{array}{r} 11,549 \\ (2,596) \\ \hline \end{array}$ | $\begin{array}{r} 10,215 \\ (2,296) \\ \hline \end{array}$ | $\begin{array}{r} 12,286 \\ (2,762) \\ \hline \end{array}$ | $\begin{aligned} & 10,882 \\ & (2,446) \\ & \hline \end{aligned}$ | $\begin{array}{r} 12,286 \\ (2,762) \\ \hline \end{array}$ | $\begin{array}{r} 10,882 \\ (2,446) \\ \hline \end{array}$ | $\begin{array}{r} 12,286 \\ (2,762) \\ \hline \end{array}$ |
|  | 406 (16) | PRI-40 | $\begin{gathered} 9,303 \\ (2,091) \end{gathered}$ | $\begin{aligned} & 12,813 \\ & (2,880) \end{aligned}$ | $\begin{gathered} 9,513 \\ (2,139) \end{gathered}$ | $\begin{aligned} & 12,953 \\ & (2,912) \end{aligned}$ | $\begin{aligned} & 10,215 \\ & (2,296) \end{aligned}$ | $\begin{aligned} & 14,042 \\ & (3,157) \end{aligned}$ | $\begin{aligned} & 10,882 \\ & (2,446) \end{aligned}$ | $\begin{aligned} & 14,042 \\ & (3,157) \end{aligned}$ | $\begin{aligned} & 10,882 \\ & (2,446) \end{aligned}$ | $\begin{aligned} & 14,042 \\ & (3,157) \end{aligned}$ |
| IB600 | 200 (7-7/8) | NA | $\begin{gathered} 6,705 \\ (1,507) \end{gathered}$ | $\begin{gathered} 7,407 \\ (1,665) \end{gathered}$ | $\begin{gathered} 6,845 \\ (1,539) \end{gathered}$ | $\begin{gathered} 7,477 \\ (1,681) \end{gathered}$ | $\begin{gathered} 7,407 \\ (1,665) \end{gathered}$ | $\begin{gathered} 7,758 \\ (1,744) \end{gathered}$ | $\begin{gathered} 7,828 \\ (1,760) \end{gathered}$ | $\begin{gathered} 7,969 \\ (1,792) \end{gathered}$ | $\begin{gathered} 8,109 \\ (1,823) \end{gathered}$ | $\begin{gathered} 8,109 \\ (1,823) \end{gathered}$ |
|  | 219 (8-5/8) | NA | $\begin{gathered} 7,477 \\ (1,681) \end{gathered}$ | $\begin{gathered} 7,793 \\ (1,752) \end{gathered}$ | $\begin{gathered} 7,547 \\ (1,697) \end{gathered}$ | $\begin{gathered} 7,828 \\ (1,760) \end{gathered}$ | $\begin{gathered} 7,793 \\ (1,752) \end{gathered}$ | $\begin{gathered} 7,934 \\ (1,784) \end{gathered}$ | $\begin{gathered} 7,969 \\ (1,792) \end{gathered}$ | $\begin{gathered} 8,039 \\ (1,807) \end{gathered}$ | $\begin{gathered} 8,109 \\ (1,823) \end{gathered}$ | $\begin{gathered} 8,109 \\ (1,823) \end{gathered}$ |
|  | 235 (9-1/4) | NA | $\begin{gathered} 7,793 \\ (1,752) \end{gathered}$ | $\begin{gathered} 8,109 \\ (1,823) \end{gathered}$ | $\begin{gathered} 7,934 \\ (1,784) \end{gathered}$ | $\begin{gathered} 9,478 \\ (2,131) \end{gathered}$ | $\begin{gathered} 8,109 \\ (1,823) \\ \hline \end{gathered}$ | $\begin{gathered} 9,478 \\ (2,131) \end{gathered}$ | $\begin{gathered} 8,109 \\ (1,823) \end{gathered}$ | $\begin{gathered} 9,478 \\ (2,131) \end{gathered}$ | $\begin{gathered} 8,109 \\ (1,823) \\ \hline \end{gathered}$ | $\begin{gathered} 9,478 \\ (2,131) \end{gathered}$ |
|  | 241 (9-1/2) | PRI-60 | $\begin{gathered} 7,863 \\ (1,768) \\ \hline \end{gathered}$ | $\begin{gathered} 8,320 \\ (1,870) \\ \hline \end{gathered}$ | $\begin{gathered} 8,004 \\ (1,799) \\ \hline \end{gathered}$ | $\begin{gathered} 9,619 \\ (2,162) \\ \hline \end{gathered}$ | $\begin{gathered} 8,320 \\ (1,870) \\ \hline \end{gathered}$ | $\begin{gathered} 9,619 \\ (2,162) \\ \hline \end{gathered}$ | $\begin{gathered} 8,320 \\ (1,870) \\ \hline \end{gathered}$ | $\begin{gathered} 9,619 \\ (2,162) \\ \hline \end{gathered}$ | $\begin{gathered} 8,320 \\ (1,870) \\ \hline \end{gathered}$ | $\begin{gathered} 9,619 \\ (2,162) \\ \hline \end{gathered}$ |
|  | 286 (11-1/4) | NA | $\begin{gathered} 8,249 \\ (1,854) \\ \hline \end{gathered}$ | $\begin{gathered} 9,513 \\ (2,139) \end{gathered}$ | $\begin{gathered} 8,530 \\ (1,918) \\ \hline \end{gathered}$ | $\begin{array}{r} 10,637 \\ (2,391) \\ \hline \end{array}$ | $\begin{gathered} 9,408 \\ (2,115) \end{gathered}$ | $\begin{array}{r} 10,637 \\ (2,391) \\ \hline \end{array}$ | $\begin{gathered} 9,864 \\ (2,218) \end{gathered}$ | $\begin{aligned} & 10,637 \\ & (2,391) \\ & \hline \end{aligned}$ | $\begin{gathered} 9,864 \\ (2,218) \\ \hline \end{gathered}$ | $\begin{array}{r} 10,637 \\ (2,391) \\ \hline \end{array}$ |
|  | 302 (11-7/8) | PRI-60 | $\begin{gathered} 8,425 \\ (1,894) \\ \hline \end{gathered}$ | $\begin{gathered} 9,970 \\ (2,241) \\ \hline \end{gathered}$ | $\begin{gathered} 8,706 \\ (1,957) \\ \hline \end{gathered}$ | $\begin{aligned} & 11,023 \\ & (2,478) \\ & \hline \end{aligned}$ | $\begin{gathered} 9,619 \\ (2,162) \\ \hline \end{gathered}$ | $\begin{aligned} & 11,023 \\ & (2,478) \\ & \hline \end{aligned}$ | $\begin{aligned} & 10,285 \\ & (2,312) \end{aligned}$ | $\begin{array}{r} 11,023 \\ (2,478) \\ \hline \end{array}$ | $\begin{array}{r} 10,391 \\ (2,336) \\ \hline \end{array}$ | $\begin{array}{r} 11,023 \\ (2,478) \\ \hline \end{array}$ |
|  | 356 (14) | PRI-60 | $\begin{array}{r} 8,846 \\ (1,989) \\ \hline \end{array}$ | $\begin{aligned} & 11,444 \\ & (2,573) \\ & \hline \end{aligned}$ | $\begin{gathered} 9,373 \\ (2,107) \end{gathered}$ | $\begin{array}{r} 12,286 \\ (2,762) \\ \hline \end{array}$ | $\begin{aligned} & 10,250 \\ & (2,304) \end{aligned}$ | $\begin{array}{r} 12,286 \\ (2,762) \end{array}$ | $\begin{aligned} & 10,882 \\ & (2,446) \end{aligned}$ | $\begin{aligned} & 12,286 \\ & (2,762) \end{aligned}$ | $\begin{aligned} & 10,882 \\ & (2,446) \\ & \hline \end{aligned}$ | $\begin{array}{r} 12,286 \\ (2,762) \\ \hline \end{array}$ |
|  | 406 (16) | PRI-60 | $\begin{gathered} 9,303 \\ (2,091) \end{gathered}$ | $\begin{aligned} & 12,813 \\ & (2,880) \end{aligned}$ | $\begin{gathered} 9,970 \\ (2,241) \end{gathered}$ | $\begin{aligned} & 13,515 \\ & (3,038) \\ & \hline \end{aligned}$ | $\begin{aligned} & 10,496 \\ & (2,360) \\ & \hline \end{aligned}$ | $\begin{aligned} & 13,831 \\ & (3,109) \end{aligned}$ | $\begin{aligned} & 10,882 \\ & (2,446) \\ & \hline \end{aligned}$ | $\begin{aligned} & 14,042 \\ & (3,157) \\ & \hline \end{aligned}$ | $\begin{aligned} & 10,882 \\ & (2,446) \\ & \hline \end{aligned}$ | $\begin{aligned} & 14,042 \\ & (3,157) \\ & \hline \end{aligned}$ |
|  | 457 (18) | NA | NA | NA | $\begin{aligned} & 10,566 \\ & (2,375) \end{aligned}$ | $\begin{aligned} & 14,709 \\ & (3,307) \end{aligned}$ | $\begin{aligned} & 10,742 \\ & (2,415) \end{aligned}$ | $\begin{aligned} & 15,340 \\ & (3,449) \end{aligned}$ | $\begin{aligned} & 10,882 \\ & (2,446) \end{aligned}$ | $\begin{aligned} & 15,797 \\ & (3,551) \end{aligned}$ | $\begin{aligned} & 10,882 \\ & (2,446) \end{aligned}$ | $\begin{aligned} & 15,797 \\ & (3,551) \end{aligned}$ |
|  | 508 (20) | NA | NA | NA | $\begin{array}{r} 10,882 \\ (2,446) \\ \hline \end{array}$ | $\begin{aligned} & 15,867 \\ & (3,567) \end{aligned}$ | $\begin{aligned} & 10,882 \\ & (2,446) \end{aligned}$ | $\begin{aligned} & 16,815 \\ & (3,780) \\ & \hline \end{aligned}$ | $\begin{aligned} & 10,882 \\ & (2,446) \end{aligned}$ | $\begin{array}{r} 17,552 \\ (3,946) \\ \hline \end{array}$ | $\begin{aligned} & 10,882 \\ & (2,446) \end{aligned}$ | $\begin{array}{r} 17,552 \\ (3,946) \\ \hline \end{array}$ |

(Footnotes on the following page)

Table 3. Additional Factored Resistances of IB Series I-Joists ${ }^{(a, b, c)}$ (Continued)

| Joist Series | Joist Depth, mm (in.) | Also Qualified for | Factored End Reactions, N (lbf) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} 38 \mathrm{~mm}(1-1 / 2 \mathrm{in} .) \\ \text { Bearing } \\ \hline \end{gathered}$ |  | 44 mm (1-3/4 in.) Bearing |  | 70 mm (2-3/4 in.) Bearing |  | 89 mm (3-1/2 in.) <br> Bearing |  | $\begin{gathered} 102 \mathrm{~mm}(4 \mathrm{in} .) \\ \text { Bearing } \\ \hline \end{gathered}$ |  |
|  |  |  | No B.S. | B.S. |
| IB700 | 241 (9-1/2) | NA | $\begin{gathered} 8,074 \\ (1,815) \\ \hline \end{gathered}$ | $\begin{gathered} 9,583 \\ (2,155) \\ \hline \end{gathered}$ | $\begin{gathered} 8,249 \\ (1,855) \\ \hline \end{gathered}$ | $\begin{array}{r} 9,619 \\ (2,162) \\ \hline \end{array}$ | $\begin{gathered} 8,952 \\ (2,012) \\ \hline \end{gathered}$ | $\begin{gathered} 9,724 \\ (2,186) \\ \hline \end{gathered}$ | $\begin{gathered} 9,478 \\ (2,131) \\ \hline \end{gathered}$ | $\begin{gathered} 9,794 \\ (2,202) \\ \hline \end{gathered}$ | $\begin{gathered} 9,829 \\ (2,210) \\ \hline \end{gathered}$ | $\begin{gathered} 9,829 \\ (2,210) \\ \hline \end{gathered}$ |
|  | 302 (11-7/8) | NA | $\begin{gathered} 8,671 \\ (1,949) \\ \hline \end{gathered}$ | $\begin{aligned} & 10,988 \\ & (2,470) \end{aligned}$ | $\begin{gathered} 8,881 \\ (1,997) \end{gathered}$ | $\begin{aligned} & 11,058 \\ & (2,486) \\ & \hline \end{aligned}$ | $\begin{gathered} 9,654 \\ (2,170) \\ \hline \end{gathered}$ | $\begin{aligned} & 11,198 \\ & (2,518) \\ & \hline \end{aligned}$ | $\begin{aligned} & 10,285 \\ & (2,312) \end{aligned}$ | $\begin{aligned} & 11,304 \\ & (2,541) \\ & \hline \end{aligned}$ | $\begin{aligned} & 10,672 \\ & (2,399) \end{aligned}$ | $\begin{aligned} & 11,374 \\ & (2,557) \\ & \hline \end{aligned}$ |
|  | 356 (14) | NA | $\begin{gathered} 9,232 \\ (2,076) \end{gathered}$ | $\begin{aligned} & 12,251 \\ & (2,754) \end{aligned}$ | $\begin{gathered} 9,443 \\ (2,123) \end{gathered}$ | $\begin{aligned} & 12,322 \\ & (2,770) \end{aligned}$ | $\begin{aligned} & 10,250 \\ & (2,304) \end{aligned}$ | $\begin{aligned} & 12,532 \\ & (2,817) \end{aligned}$ | $\begin{array}{r} 10,952 \\ (2,462) \\ \hline \end{array}$ | $\begin{aligned} & 12,673 \\ & (2,849) \end{aligned}$ | $\begin{aligned} & 11,409 \\ & (2,565) \end{aligned}$ | $\begin{array}{r} 12,743 \\ (2,865) \end{array}$ |
|  | 406 (16) | NA | $\begin{gathered} 9,724 \\ (2,186) \end{gathered}$ | $\begin{array}{r} 13,445 \\ (3,023) \\ \hline \end{array}$ | $\begin{gathered} 9,970 \\ (2,241) \\ \hline \end{gathered}$ | $\begin{array}{r} 13,515 \\ (3,038) \end{array}$ | $\begin{aligned} & 10,917 \\ & (2,454) \\ & \hline \end{aligned}$ | $\begin{aligned} & 14,042 \\ & (3,157) \end{aligned}$ | $\begin{aligned} & 11,619 \\ & (2,612) \\ & \hline \end{aligned}$ | $\begin{aligned} & 14,042 \\ & (3,157) \\ & \hline \end{aligned}$ | $\begin{aligned} & 12,111 \\ & (2,723) \\ & \hline \end{aligned}$ | $\begin{aligned} & 14,042 \\ & (3,157) \\ & \hline \end{aligned}$ |
| IB800 | 200 (7-7/8) | NA | $\begin{gathered} 6,705 \\ (1,507) \\ \hline \end{gathered}$ | $\begin{gathered} 7,407 \\ (1,665) \\ \hline \end{gathered}$ | $\begin{gathered} 6,845 \\ (1,539) \\ \hline \end{gathered}$ | $\begin{gathered} 7,477 \\ (1,681) \\ \hline \end{gathered}$ | $\begin{gathered} 7,407 \\ (1,665) \\ \hline \end{gathered}$ | $\begin{gathered} 7,758 \\ (1,744) \\ \hline \end{gathered}$ | $\begin{gathered} 7,828 \\ (1,760) \\ \hline \end{gathered}$ | $\begin{gathered} 7,969 \\ (1,792) \\ \hline \end{gathered}$ | $\begin{gathered} 8,109 \\ (1,823) \\ \hline \end{gathered}$ | $\begin{gathered} 8,109 \\ (1,823) \\ \hline \end{gathered}$ |
|  | 219 (8-5/8) | NA | $\begin{gathered} 7,477 \\ (1,681) \\ \hline \end{gathered}$ | $\begin{gathered} 7,793 \\ (1,752) \\ \hline \end{gathered}$ | $\begin{gathered} 7,547 \\ (1,697) \\ \hline \end{gathered}$ | $\begin{gathered} 7,828 \\ (1,760) \end{gathered}$ | $\begin{gathered} 7,793 \\ (1,752) \\ \hline \end{gathered}$ | $\begin{gathered} 7,934 \\ (1,784) \\ \hline \end{gathered}$ | $\begin{gathered} 7,969 \\ (1,792) \\ \hline \end{gathered}$ | $\begin{gathered} 8,039 \\ (1,807) \\ \hline \end{gathered}$ | $\begin{gathered} 8,109 \\ (1,823) \\ \hline \end{gathered}$ | $\begin{gathered} 8,109 \\ (1,823) \\ \hline \end{gathered}$ |
|  | 235 (9-1/4) | NA | $\begin{gathered} 7,793 \\ (1,752) \end{gathered}$ | $\begin{gathered} 8,109 \\ (1,823) \end{gathered}$ | $\begin{gathered} 7,934 \\ (1,784) \end{gathered}$ | $\begin{gathered} 9,689 \\ (2,178) \end{gathered}$ | $\begin{gathered} 8,109 \\ (1,823) \end{gathered}$ | $\begin{gathered} 9,689 \\ (2,178) \end{gathered}$ | $\begin{gathered} 8,109 \\ (1,823) \end{gathered}$ | $\begin{gathered} 9,689 \\ (2,178) \end{gathered}$ | $\begin{gathered} 8,109 \\ (1,823) \end{gathered}$ | $\begin{gathered} 9,759 \\ (2,194) \end{gathered}$ |
|  | 241 (9-1/2) | NA | $\begin{gathered} 7,863 \\ (1,768) \end{gathered}$ | $\begin{gathered} 8,320 \\ (1,870) \end{gathered}$ | $\begin{gathered} 8,004 \\ (1,799) \end{gathered}$ | $\begin{gathered} 9,864 \\ (2,218) \end{gathered}$ | $\begin{gathered} 8,320 \\ (1,870) \end{gathered}$ | $\begin{gathered} 9,864 \\ (2,218) \\ \hline \end{gathered}$ | $\begin{gathered} 8,320 \\ (1,870) \end{gathered}$ | $\begin{gathered} 9,864 \\ (2,218) \end{gathered}$ | $\begin{gathered} 8,320 \\ (1,870) \end{gathered}$ | $\begin{gathered} 9,864 \\ (2,218) \\ \hline \end{gathered}$ |
|  | 286 (11-1/4) | NA | $\begin{gathered} 8,249 \\ (1,854) \end{gathered}$ | $\begin{gathered} 9,513 \\ (2,139) \end{gathered}$ | $\begin{gathered} 8,530 \\ (1,918) \end{gathered}$ | $\begin{aligned} & 10,812 \\ & (2,431) \end{aligned}$ | $\begin{gathered} 9,408 \\ (2,115) \end{gathered}$ | $\begin{array}{r} 10,812 \\ (2,431) \\ \hline \end{array}$ | $\begin{gathered} 9,864 \\ (2,218) \end{gathered}$ | $\begin{aligned} & 10,812 \\ & (2,431) \end{aligned}$ | $\begin{gathered} 9,864 \\ (2,218) \end{gathered}$ | $\begin{array}{r} 10,812 \\ (2,431) \end{array}$ |
|  | 302 (11-7/8) | PRI-80 | $\begin{gathered} 8,846 \\ (1,989) \end{gathered}$ | $\begin{aligned} & 11,163 \\ & (2,510) \end{aligned}$ | $\begin{gathered} 9,057 \\ (2,036) \end{gathered}$ | $\begin{aligned} & 11,163 \\ & (2,510) \end{aligned}$ | $\begin{gathered} 9,864 \\ (2,218) \\ \hline \end{gathered}$ | $\begin{aligned} & 11,163 \\ & (2,510) \end{aligned}$ | $\begin{aligned} & 10,461 \\ & (2,352) \end{aligned}$ | $\begin{aligned} & 11,163 \\ & (2,510) \end{aligned}$ | $\begin{aligned} & 10,882 \\ & (2,446) \end{aligned}$ | $\begin{aligned} & 11,163 \\ & (2,510) \\ & \hline \end{aligned}$ |
|  | 356 (14) | PRI-80 | $\begin{gathered} 9,373 \\ (2,107) \end{gathered}$ | $\begin{aligned} & 12,602 \\ & (2,833) \end{aligned}$ | $\begin{gathered} 9,583 \\ (2,155) \end{gathered}$ | $\begin{aligned} & 12,637 \\ & (2,841) \end{aligned}$ | $\begin{aligned} & 10,321 \\ & (2,320) \\ & \hline \end{aligned}$ | $\begin{aligned} & 12,743 \\ & (2,865) \end{aligned}$ | $\begin{array}{r} 10,882 \\ (2,446) \\ \hline \end{array}$ | $\begin{array}{r} 12,848 \\ (2,889) \\ \hline \end{array}$ | $\begin{array}{r} 11,233 \\ (2,525) \\ \hline \end{array}$ | $\begin{array}{r} 12,883 \\ (2,896) \\ \hline \end{array}$ |
|  | 406 (16) | PRI-80 | $\begin{gathered} 9,899 \\ (2,226) \end{gathered}$ | $\begin{aligned} & 13,971 \\ & (3,141) \end{aligned}$ | $\begin{aligned} & 10,075 \\ & (2,265) \end{aligned}$ | $\begin{array}{r} 14,042 \\ (3,157) \end{array}$ | $\begin{aligned} & 10,742 \\ & (2,415) \\ & \hline \end{aligned}$ | $\begin{aligned} & 14,252 \\ & (3,204) \\ & \hline \end{aligned}$ | $\begin{aligned} & 10,882 \\ & (2,446) \\ & \hline \end{aligned}$ | $\begin{array}{r} 14,428 \\ (3,244) \\ \hline \end{array}$ | $\begin{aligned} & 11,233 \\ & (2,525) \\ & \hline \end{aligned}$ | $\begin{aligned} & 14,533 \\ & (3,267) \\ & \hline \end{aligned}$ |
|  | 457 (18) | NA | NA | NA | $\begin{aligned} & 10,566 \\ & (2,376) \end{aligned}$ | $\begin{array}{r} 15,937 \\ (3,583) \end{array}$ | $\begin{aligned} & 10,742 \\ & (2,415) \end{aligned}$ | $\begin{aligned} & 16,043 \\ & (3,610) \end{aligned}$ | $\begin{aligned} & 10,882 \\ & (2,446) \\ & \hline \end{aligned}$ | $\begin{array}{r} 16,148 \\ (3,630) \end{array}$ | $\begin{aligned} & 11,233 \\ & (2,525) \end{aligned}$ | $\begin{array}{r} 16,148 \\ (3,630) \\ \hline \end{array}$ |
|  | 508 (20) | NA | NA | NA | $\begin{aligned} & 10,882 \\ & (2,447) \end{aligned}$ | $\begin{aligned} & 17,271 \\ & (3,883) \end{aligned}$ | $\begin{aligned} & 10,882 \\ & (2,446) \\ & \hline \end{aligned}$ | $\begin{array}{r} 17,833 \\ (4,010) \\ \hline \end{array}$ | $\begin{aligned} & 10,882 \\ & (2,446) \end{aligned}$ | $\begin{array}{r} 18,254 \\ (4,104) \\ \hline \end{array}$ | $\begin{array}{r} 11,584 \\ (2,604) \\ \hline \end{array}$ | $\begin{array}{r} 18,254 \\ (4,104) \\ \hline \end{array}$ |

(Footnotes on the following page)

Table 3. Additional Factored Resistances of IB Series I-Joists ${ }^{(\mathrm{a}, \mathrm{b}, \mathrm{c})}$ (Continued)

| Joist Series | Joist Depth, mm (in.) | Also Qualified for | Factored End Reactions, N (lbf) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 38 mm (1-1/2 in.) <br> Bearing |  | 44 mm (1-3/4 in.) Bearing |  | 70 mm (2-3/4 in.) Bearing |  | $89 \mathrm{~mm}(3-1 / 2 \mathrm{in}$.) <br> Bearing |  | $102 \mathrm{~mm}(4 \mathrm{in} .)$ <br> Bearing |  |
|  |  |  | No B.S. | B.S. |
| IB900x | 200 (7-7/8) | NA | $\begin{gathered} 8,811 \\ (1,981) \\ \hline \end{gathered}$ | $\begin{gathered} 8,952 \\ (2,012) \\ \hline \end{gathered}$ | $\begin{gathered} 8,881 \\ (1,997) \\ \hline \end{gathered}$ | $\begin{gathered} 9,022 \\ (2,028) \end{gathered}$ | $\begin{gathered} 9,197 \\ (2,068) \\ \hline \end{gathered}$ | $\begin{gathered} 9,267 \\ (2,084) \\ \hline \end{gathered}$ | $\begin{gathered} 9,408 \\ (2,115) \end{gathered}$ | $\begin{gathered} 9,443 \\ (2,123) \\ \hline \end{gathered}$ | $\begin{gathered} 9,548 \\ (2,147) \\ \hline \end{gathered}$ | $\begin{gathered} 9,548 \\ (2,147) \\ \hline \end{gathered}$ |
|  | 219 (8-5/8) | NA | $\begin{gathered} 9,022 \\ (2,028) \\ \hline \end{gathered}$ | $\begin{gathered} 9,373 \\ (2,107) \\ \hline \end{gathered}$ | $\begin{gathered} 9,162 \\ (2,060) \end{gathered}$ | $\begin{gathered} 9,478 \\ (2,131) \\ \hline \end{gathered}$ | $\begin{gathered} 9,654 \\ (2,170) \\ \hline \end{gathered}$ | $\begin{gathered} 9,864 \\ (2,218) \\ \hline \end{gathered}$ | $\begin{array}{r} 10,005 \\ (2,249) \\ \hline \end{array}$ | $\begin{aligned} & 10,110 \\ & (2,273) \\ & \hline \end{aligned}$ | $\begin{aligned} & 10,250 \\ & (2,304) \\ & \hline \end{aligned}$ | $\begin{aligned} & 10,285 \\ & (2,312) \\ & \hline \end{aligned}$ |
|  | 241 (9-1/2) | NA | $\begin{gathered} 9,267 \\ (2,084) \\ \hline \end{gathered}$ | $\begin{gathered} 9,864 \\ (2,218) \\ \hline \end{gathered}$ | $\begin{gathered} 9,443 \\ (2,123) \end{gathered}$ | $\begin{array}{r} 10,005 \\ (2,249) \\ \hline \end{array}$ | $\begin{array}{r} 10,180 \\ (2,289) \\ \hline \end{array}$ | $\begin{array}{r} 10,531 \\ (2,368) \end{array}$ | $\begin{array}{r} 10,707 \\ (2,407) \\ \hline \end{array}$ | $\begin{aligned} & 10,917 \\ & (2,454) \\ & \hline \end{aligned}$ | $\begin{array}{r} 11,058 \\ (2,486) \\ \hline \end{array}$ | $\begin{array}{r} 11,163 \\ (2,510) \\ \hline \end{array}$ |
|  | 302 (11-7/8) | NA | $\begin{gathered} 9,829 \\ (2,210) \\ \hline \end{gathered}$ | $\begin{array}{r} 11,233 \\ (2,525) \\ \hline \end{array}$ | $\begin{gathered} 9,829 \\ (2,210) \end{gathered}$ | $\begin{aligned} & 11,479 \\ & (2,581) \\ & \hline \end{aligned}$ | $\begin{array}{r} 11,444 \\ (2,573) \\ \hline \end{array}$ | $\begin{aligned} & 12,392 \\ & (2,786) \end{aligned}$ | $\begin{array}{r} 12,567 \\ (2,825) \\ \hline \end{array}$ | $\begin{array}{r} 13,059 \\ (2,936) \\ \hline \end{array}$ | $\begin{array}{r} 13,234 \\ (2,975) \\ \hline \end{array}$ | $\begin{aligned} & 13,515 \\ & (3,038) \end{aligned}$ |
|  | 356 (14) | PRI-90 | $\begin{gathered} 9,829 \\ (2,210) \\ \hline \end{gathered}$ | $\begin{array}{r} 12,637 \\ (2,841) \\ \hline \end{array}$ | $\begin{gathered} 9,829 \\ (2,210) \end{gathered}$ | $\begin{aligned} & 12,637 \\ & (2,841) \\ & \hline \end{aligned}$ | $\begin{array}{r} 11,444 \\ (2,573) \\ \hline \end{array}$ | $\begin{array}{r} 13,129 \\ (2,952) \\ \hline \end{array}$ | $\begin{array}{r} 12,673 \\ (2,849) \\ \hline \end{array}$ | $\begin{array}{r} 13,761 \\ (3,094) \\ \hline \end{array}$ | $\begin{array}{r} 13,234 \\ (2,975) \\ \hline \end{array}$ | $\begin{array}{r} 14,919 \\ (3,354) \\ \hline \end{array}$ |
|  | 406 (16) | PRI-90 | $\begin{gathered} 9,970 \\ (2,241) \\ \hline \end{gathered}$ | $\begin{array}{r} 13,971 \\ (3,141) \\ \hline \end{array}$ | $\begin{array}{r} 10,075 \\ (2,265) \\ \hline \end{array}$ | $\begin{array}{r} 14,042 \\ (3,157) \\ \hline \end{array}$ | $\begin{array}{r} 11,514 \\ (2,588) \\ \hline \end{array}$ | $\begin{array}{r} 15,376 \\ (3,457) \\ \hline \end{array}$ | $\begin{array}{r} 12,673 \\ (2,849) \\ \hline \end{array}$ | $\begin{array}{r} 16,358 \\ (3,677) \\ \hline \end{array}$ | $\begin{array}{r} 13,234 \\ (2,975) \\ \hline \end{array}$ | $\begin{array}{r} 16,358 \\ (3,677) \\ \hline \end{array}$ |
|  | 457 (18) | NA | NA | NA | $\begin{aligned} & 10,566 \\ & (2,375) \\ & \hline \end{aligned}$ | $\begin{array}{r} 15,937 \\ (3,583) \\ \hline \end{array}$ | $\begin{array}{r} 11,233 \\ (2,525) \\ \hline \end{array}$ | $\begin{array}{r} 16,885 \\ (3,796) \\ \hline \end{array}$ | $\begin{aligned} & 11,760 \\ & (2,644) \end{aligned}$ | $\begin{array}{r} 17,622 \\ (3,962) \\ \hline \end{array}$ | $\begin{array}{r} 13,234 \\ (2,975) \\ \hline \end{array}$ | $\begin{array}{r} 17,622 \\ (3,962) \\ \hline \end{array}$ |
|  | 508 (20) | NA | NA | NA | $\begin{aligned} & 10,672 \\ & (2,399) \\ & \hline \end{aligned}$ | $\begin{array}{r} 17,341 \\ (3,898) \\ \hline \end{array}$ | $\begin{aligned} & 11,233 \\ & (2,525) \\ & \hline \end{aligned}$ | $\begin{aligned} & 18,184 \\ & (4,088) \\ & \hline \end{aligned}$ | $\begin{aligned} & 11,760 \\ & (2,644) \end{aligned}$ | $\begin{aligned} & 18,816 \\ & (4,230) \end{aligned}$ | $\begin{array}{r} 13,234 \\ (2,975) \\ \hline \end{array}$ | $\begin{aligned} & 18,921 \\ & (4,254) \\ & \hline \end{aligned}$ |
|  | 559 (22) | NA | NA | NA | $\begin{array}{r} 10,321 \\ (2,320) \\ \hline \end{array}$ | $\begin{aligned} & 18,219 \\ & (4,096) \\ & \hline \end{aligned}$ | $\begin{array}{r} 11,128 \\ (2,502) \\ \hline \end{array}$ | $\begin{array}{r} 19,132 \\ (4,301) \\ \hline \end{array}$ | $\begin{array}{r} 11,760 \\ (2,644) \\ \hline \end{array}$ | $\begin{aligned} & 19,799 \\ & (4,451) \\ & \hline \end{aligned}$ | $\begin{array}{r} 13,094 \\ (2,944) \\ \hline \end{array}$ | $\begin{aligned} & 20,185 \\ & (4,538) \\ & \hline \end{aligned}$ |
|  | 610 (24) | NA | NA | NA | $\begin{aligned} & 10,321 \\ & (2,320) \\ & \hline \end{aligned}$ | $\begin{aligned} & 20,220 \\ & (4,546) \end{aligned}$ | $\begin{aligned} & 11,128 \\ & (2,502) \end{aligned}$ | $\begin{aligned} & 20,536 \\ & (4,617) \end{aligned}$ | $\begin{aligned} & 11,760 \\ & (2,644) \end{aligned}$ | $\begin{aligned} & 20,782 \\ & (4,672) \end{aligned}$ | $\begin{aligned} & 12,788 \\ & (2,873) \\ & \hline \end{aligned}$ | $\begin{aligned} & 21,484 \\ & (4,830) \\ & \hline \end{aligned}$ |

(a) The tabulated values are for the standard term of load duration ( $K_{D}=1.0$ ). All values are permitted to be adjusted for other load durations as permitted by the code provided that the adjusted values do not exceed the factored compressive resistance perpendicular to grain ( $\mathrm{Q}_{\mathrm{r}}$ ) of the bearing plate supporting the I-joist in accordance with CSA O86.
(b) Interpolation between bearing lengths is permitted.
(c) Bearing stiffeners shall be installed in accordance with the recommendations provided by the manufacturer.

Table 4. Additional Factored Resistances of IB Series I-Joists ${ }^{(a, b, c, c)}$

| Joist <br> Series | Joist Depth, mm (in.) | Permitted to Be Labeled as | Factored Intermediate Reactions, N (lbf) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 89 mm (3-1/2 in.) Bearing |  | 140 mm (5-1/2 in) Bearing |  |
|  |  |  | No Stiffeners | Stiffeners | No Stiffeners | Stiffeners |
| IB400 | 200 (7-7/8) | NA | 15,165 (3,409) | 15,481 (3,480) | 16,218 (3,646) | 16,499 (3,709) |
|  | 219 (8-5/8) | NA | 15,165 (3,409) | 16,043 (3,607) | 16,218 (3,646) | 16,639 (3,741) |
|  | 235 (9-1/4) | NA | 15,165 (3,409) | 16,534 (3,717) | 16,218 (3,646) | 16,639 (3,741) |
|  | 241 (9-1/2) | PRI-40 | 15,165 (3,409) | 16,639 (3,741) | 16,639 (3,741) | 16,639 (3,741) |
|  | 286 (11-1/4) | NA | 17,552 (3,946) | 19,623 (4,411) | 19,728 (4,435) | 19,728 (4,435) |
|  | 302 (11-7/8) | PRI-40 | 17,552 (3,946) | 19,658 (4,419) | 19,728 (4,435) | 20,782 (4,672) |
|  | 356 (14) | PRI-40 | 17,552 (3,946) | 19,833 (4,459) | 21,765 (4,893) | 24,257 (5,453) |
|  | 406 (16) | PRI-40 | 17,552 (3,946) | 20,009 (4,498) | 21,765 (4,893) | 25,626 (5,761) |
| IB600 | 200 (7-7/8) | NA | 15,165 (3,409) | 15,481 (3,480) | 16,218 (3,646) | 16,499 (3,709) |
|  | 219 (8-5/8) | NA | 15,165 (3,409) | 16,043 (3,607) | 16,218 (3,646) | 17,517 (3,938) |
|  | 235 (9-1/4) | NA | 15,165 (3,409) | 18,956 (4,261) | 16,218 (3,646) | 18,956 (4,261) |
|  | 241 (9-1/2) | PRI-60 | 15,165 (3,409) | 19,237 (4,325) | 16,639 (3,741) | 19,237 (4,325) |
|  | 286 (11-1/4) | NA | 17,552 (3,946) | 21,273 (4,782) | 19,728 (4,435) | 21,273 (4,782) |
|  | 302 (11-7/8) | PRI-60 | 17,552 (3,946) | 21,589 (4,853) | 19,728 (4,435) | 22,045 (4,956) |
|  | 356 (14) | PRI-60 | 17,552 (3,946) | 22,572 (5,074) | 21,765 (4,893) | 24,257 (5,453) |
|  | 406 (16) | PRI-60 | 17,552 (3,946) | 23,520 (5,288) | 21,765 (4,893) | 25,626 (5,761) |
|  | 457 (18) | NA | 17,552 (3,946) | 24,046 $(5,406)$ | 21,765 (4,893) | 26,223 (5,895) |
|  | 508 (20) | NA | 17,552 (3,946) | 24,222 $(5,445)$ | 21,765 (4,893) | 26,820 (6,029) |
| IB700 | 241 (9-1/2) | NA | 17,552 (3,946) | 19,658 (4,420) | 17,552 (3,946) | 19,658 (4,420) |
|  | 302 (11-7/8) | NA | 17,552 (3,946) | 22,747 (5,114) | 20,431 (4,593) | 22,747 (5,114) |
|  | 356 (14) | NA | 17,552 (3,946) | 25,486 (5,730) | 21,765 (4,893) | 25,486 (5,730) |
|  | 406 (16) | NA | 17,552 (3,946) | 28,083 (6,314) | 21,765 (4,893) | 28,083 (6,314) |
| IB800 | 200 (7-7/8) | NA | 15,235 (3,425) | 15,481 (3,480) | 16,218 (3,646) | 16,499 (3,709) |
|  | 219 (8-5/8) | NA | 15,270 (3,433) | 16,043 (3,607) | 16,218 (3,646) | 17,517 (3,938) |
|  | 235 (9-1/4) | NA | 16,218 (3,646) | 18,956 (4,261) | 16,218 (3,646) | 18,956 (4,261) |
|  | 241 (9-1/2) | NA | 17,341 (3,898) | 19,237 (4,325) | 17,341 (3,898) | 19,237 (4,325) |
|  | 286 (11-1/4) | NA | 19,728 (4,435) | 21,273 (4,782) | 19,728 (4,435) | 21,273 (4,782) |
|  | 302 (11-7/8) | PRI-80 | 19,764 (4,443) | 22,326 (5,019) | 22,045 (4,956) | 22,326 (5,019) |
|  | 356 (14) | PRI-80 | 21,765 (4,893) | 25,275 (5,682) | 23,239 (5,225) | 25,731 (5,785) |
|  | 406 (16) | PRI-80 | 21,765 (4,893) | 28,083 (6,313) | 23,450 (5,272) | 28,785 (6,472) |
|  | 457 (18) | NA | 21,765 (4,893) | 29,663 (6,669) | 21,765 (4,893) | 29,663 (6,669) |
|  | 508 (20) | NA | 21,765 (4,893) | 30,541 (6,866) | 21,765 (4,893) | 30,541 (6,866) |
| IB900x | 200 (7-7/8) | NA | 19,904 (4,475) | 21,765 (4,893) | 20,044 (4,506) | 22,116 (4,972) |
|  | 219 (8-5/8) | NA | 20,606 (4,633) | 22,116 (4,972) | 20,711 (4,656) | 22,396 (5,035) |
|  | 241 (9-1/2) | NA | 21,378 (4,806) | 22,502 (5,059) | 21,484 (4,830) | 22,712 (5,106) |
|  | 302 (11-7/8) | NA | 23,555 (5,295) | 23,555 (5,295) | 23,555 (5,295) | 23,555 (5,295) |
|  | 356 (14) | PRI-90 | 23,555 (5,295) | 25,275 (5,682) | 23,555 (5,295) | 25,731 (5,785) |
|  | 406 (16) | PRI-90 | 23,555 (5,295) | 28,083 (6,314) | 23,555 (5,295) | 28,785 (6,472) |
|  | 457 (18) | NA | 23,555 (5,295) | 29,979 (6,740) | 23,555 (5,295) | 32,577 (7,324) |
|  | 508 (20) | NA | 23,555 (5,295) | 32,296 (7,260) | 23,555 (5,295) | 33,770 (7,592) |
|  | 559 (22) | NA | 23,555 (5,295) | 34,086 (7,663) | 23,555 (5,295) | 34,191 (7,687) |
|  | 610 (24) | NA | 23,555 (5,295) | 34,577 (7,774) | 23,555 (5,295) | 34,577 (7,774) |

(a) The tabulated values are for the standard term of load duration ( $K_{D}=1.0$ ). All values are permitted to be adjusted for other load durations as permitted by the code provided that the adjusted values do not exceed the factored compressive resistance perpendicular to grain $\left(Q_{r}\right)$ of the bearing plate supporting the l-joist in accordance with CSA O86.
(b) Interpolation between bearing lengths is permitted.
${ }^{(c)}$ Bearing stiffeners shall be installed in accordance with the recommendations provided by the manufacturer.

APA - The Engineered Wood Association is an approved national standards developer accredited by American National Standards Institute (ANSI). APA publishes ANSI standards and Voluntary Product Standards for wood structural panels and engineered wood products. APA is an accredited certification body under ISO/IEC 17065 by Standards Council of Canada (SCC), an accredited inspection agency under ISO/IEC 17020 by International Code Council (ICC) International Accreditation Service (IAS), and an accredited testing organization under ISO/IEC 17025 by IAS. APA is also an approved Product Certification Agency, Testing Laboratory, Quality Assurance Entity, Validation Entity, and Product Evaluation Entity by the State of Florida, and an approved testing laboratory by City of Los Angeles.

## APA - THE ENGINEERED WOOD ASSOCIATION <br> HEADQUARTERS

7011 So. $19^{\text {th }}$ St. - Tacoma, Washington 98466
Phone: (253) 565-6600 • Fax: (253) 565-7265 • Internet Address: www.apawood.org

## PRODUCT SUPPORT HELP DESK

(253) 620-7400 • E-mail Address: help@apawood.org

DISCLAIMER
APA Product Report ${ }^{\circledR}$ is a trademark of APA - The Engineered Wood Association, Tacoma, Washington. The information contained herein is based on the product evaluation in accordance with the references noted in this report. Neither APA, nor its members make any warranty, expressed or implied, or assume any legal liability or responsibility for the use, application of, and/or reference to opinions, findings, conclusions, or recommendations included in this report. Consult your local jurisdiction or design professional to assure compliance with code, construction, and performance requirements. Because APA has no control over quality of workmanship or the conditions under which engineered wood products are used, it cannot accept responsibility for product performance or designs as actually constructed.

